Ionotropic receptors and ion channels in ischemic neuronal death and dysfunction

Loss of energy supply to neurons during stroke induces a rapid loss of membrane potential that is called the anoxic depolarization. Anoxic depolarizations result in tremendous physiological stress on the neurons because of the dysregulation of ionic fluxes and the loss of ATP to drive ion pumps that maintain electrochemical gradients. In this review, we present an overview of some of the ionotropic receptors and ion channels that are thought to contribute to the anoxic depolarization of neurons and subsequently, to cell death. The ionotropic receptors for glutamate and ATP that function as ligand-gated cation channels are critical in the death and dysfunction of neurons. Interestingly, two of these receptors (P2X7 and NMDAR) have been shown to couple to the pannexin-1 (Panx1) ion channel. We also discuss the important roles of transient receptor potential (TRP) channels and acid-sensing ion channels (ASICs) in responses to ischemia. The central challenge that emerges from our current understanding of the anoxic depolarization is the need to elucidate the mechanistic and temporal interrelations of these ion channels to fully appreciate their impact on neurons during stroke.

[1]  S. Skaper,et al.  The P2X7 purinergic receptor: from physiology to neurological disorders , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[2]  M. Bennett,et al.  The AMPAR subunit GluR2: still front and center-stage 1 1 Published on the World Wide Web on 30 October 2000. , 2000, Brain Research.

[3]  R. Corradetti,et al.  Effect of A2A adenosine receptor stimulation and antagonism on synaptic depression induced by in vitro ischaemia in rat hippocampal slices , 1999, British journal of pharmacology.

[4]  K. Jacobson,et al.  Chronic NMDA receptor stimulation: therapeutic implications of its effect on adenosine A1 receptors. , 1995, European journal of pharmacology.

[5]  Roger J. Thompson,et al.  Ischemia Opens Neuronal Gap Junction Hemichannels , 2006, Science.

[6]  F. Pedata,et al.  P2 receptor antagonists prevent synaptic failure and extracellular signal‐regulated kinase1/2 activation induced by oxygen and glucose deprivation in rat CA1 hippocampus in vitro , 2011, The European journal of neuroscience.

[7]  Paolo Bernardi,et al.  Mitochondrial permeability transition in Ca(2+)-dependent apoptosis and necrosis. , 2011, Cell calcium.

[8]  H. Chen,et al.  An AMPA glutamatergic receptor activation-nitric oxide synthesis step signals transsynaptic apoptosis in limbic cortex , 2006, Neuropharmacology.

[9]  G. Bernardi,et al.  Extracellular ATP and nerve growth factor intensify hypoglycemia‐induced cell death in primary neurons: role of P2 and NGFRp75 receptors , 2002, Journal of neurochemistry.

[10]  C. Matute,et al.  Neuroglial interactions mediated by purinergic signalling in the pathophysiology of CNS disorders. , 2011, Seminars in cell & developmental biology.

[11]  H. Schindelin,et al.  Candidate Amino Acids Involved in H+ Gating of Acid-sensing Ion Channel 1a* , 2008, Journal of Biological Chemistry.

[12]  K. Jacobson,et al.  Adenosine A3 receptor stimulation and cerebral ischemia. , 1994, European journal of pharmacology.

[13]  H. Monyer,et al.  Pannexins in ischemia-induced neurodegeneration , 2011, Proceedings of the National Academy of Sciences.

[14]  D. Zorov,et al.  Role of acidosis, NMDA receptors, and acid-sensitive ion channel 1a (ASIC1a) in neuronal death induced by ischemia , 2008, Biochemistry (Moscow).

[15]  D. Spray,et al.  Pannexin1 is part of the pore forming unit of the P2X7 receptor death complex , 2007, FEBS letters.

[16]  H. Hirai,et al.  Molecular Determinants of Agonist Discrimination by NMDA Receptor Subunits: Analysis of the Glutamate Binding Site on the NR2B Subunit , 1997, Neuron.

[17]  D. Linden,et al.  D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Global Ischemia Induces Downregulation of Glur2 mRNA and Increases AMPA Receptor-Mediated Ca2+ Influx in Hippocampal CA1 Neurons of Gerbil , 1997 .

[19]  N. Dale,et al.  Temporal and mechanistic dissociation of ATP and adenosine release during ischaemia in the mammalian hippocampus1 , 2007, Journal of neurochemistry.

[20]  D. J. Cook,et al.  Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain , 2012, Nature.

[21]  Michael R. Elliott,et al.  Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis , 2010, Nature.

[22]  C. Thompson,et al.  ATP release by way of connexin 36 hemichannels mediates ischemic tolerance in vitro. , 2008, Biochemical and biophysical research communications.

[23]  E. Ongini,et al.  Blockade of adenosine A2A receptors by SCH 58261 results in neuroprotective effects in cerebral ischaemia in rats , 1998, Neuroreport.

[24]  M. Bennett,et al.  Switch in glutamate receptor subunit gene expression in CA1 subfield of hippocampus following global ischemia in rats. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[25]  P. V. Rayudu,et al.  Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A , 1998, Nature.

[26]  G. Dahl,et al.  Pannexin 1 in erythrocytes: Function without a gap , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[27]  K. Jacobson,et al.  Cerebral ischemia in gerbils: effects of acute and chronic treatment with adenosine A2A receptor agonist and antagonist. , 1995, European journal of pharmacology.

[28]  T. Murphy,et al.  In Vivo Calcium Imaging Reveals Functional Rewiring of Single Somatosensory Neurons after Stroke , 2008, The Journal of Neuroscience.

[29]  J. Passonneau,et al.  An in vitro model of ischemia: metabolic and electrical alterations in the hippocampal slice , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  Ann Marie Craig,et al.  NMDA Receptor Subunits Have Differential Roles in Mediating Excitotoxic Neuronal Death Both In Vitro and In Vivo , 2007, The Journal of Neuroscience.

[31]  Timothy H Murphy,et al.  Rapid Reversible Changes in Dendritic Spine Structure In Vivo Gated by the Degree of Ischemia , 2005, The Journal of Neuroscience.

[32]  P. Gerwins,et al.  Src family kinase‐inhibitor PP2 reduces focal ischemic brain injury , 2004, Acta neurologica Scandinavica.

[33]  C. Tribble,et al.  An adenosine A2A agonist, ATL-146e, reduces paralysis and apoptosis during rabbit spinal cord reperfusion. , 2001, Journal of vascular surgery.

[34]  Stefan Gründer,et al.  Structure, function, and pharmacology of acid-sensing ion channels (ASICs): focus on ASIC1a. , 2010, International journal of physiology, pathophysiology and pharmacology.

[35]  David E. Clapham,et al.  International Union of Basic and Clinical Pharmacology. LXXVI. Current Progress in the Mammalian TRP Ion Channel Family , 2010, Pharmacological Reviews.

[36]  Jean-Luc Daval,et al.  Protective effect of cyclohexyladenosine on adenosine A1-receptors, guanine nucleotide and forskolin binding sites following transient brain ischemia: a quantitative autoradiographic study , 1989, Brain Research.

[37]  D. Spray,et al.  THE MOLECULAR SUBSTRATE OF ASTROCYTE "HEMICHANNELS" , 2009 .

[38]  Robert T. R. Huckstepp,et al.  Connexin hemichannel‐mediated CO2‐dependent release of ATP in the medulla oblongata contributes to central respiratory chemosensitivity , 2010, The Journal of physiology.

[39]  M. Gutnick,et al.  Enhanced Spontaneous Transmitter Release Is the Earliest Consequence of Neocortical Hypoxia That Can Explain the Disruption of Normal Circuit Function , 2001, The Journal of Neuroscience.

[40]  M. Lazdunski,et al.  A proton-gated cation channel involved in acid-sensing , 1997, Nature.

[41]  F. Pedata,et al.  The role of ATP and adenosine in the brain under normoxic and ischemic conditions , 2007, Purinergic Signalling.

[42]  M. Bennett,et al.  Erratum: Switch in glutamate receptor subunit gene expression in CA1 subfield of hippocampus following global ischemia in rats (Proc. Natl. Acad. Sci. USA (November 1, 1992) 89 (10499-10503)) , 1993 .

[43]  Guy C. Brown,et al.  Inflammatory Neurodegeneration Mediated by Nitric Oxide from Activated Glia-Inhibiting Neuronal Respiration, Causing Glutamate Release and Excitotoxicity , 2001, The Journal of Neuroscience.

[44]  K. Jacobson,et al.  Postischemic administration of adenosine amine congener (ADAC): analysis of recovery in gerbils. , 1996, European journal of pharmacology.

[45]  B. Bahr,et al.  Early calpain‐mediated proteolysis following AMPA receptor activation compromises neuronal survival in cultured hippocampal neurons , 2004, Journal of neurochemistry.

[46]  C. Culmsee,et al.  Upregulation of the Enzyme Chain Hydrolyzing Extracellular ATP after Transient Forebrain Ischemia in the Rat , 1998, The Journal of Neuroscience.

[47]  Roger J. Thompson,et al.  Non-junction functions of pannexin-1 channels , 2010, Trends in Neurosciences.

[48]  J. Macdonald,et al.  A Key Role for TRPM7 Channels in Anoxic Neuronal Death , 2003, Cell.

[49]  R. Wenthold,et al.  Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  C. Harteneck Function and pharmacology of TRPM cation channels , 2005, Naunyn-Schmiedeberg's Archives of Pharmacology.

[51]  J. Simard,et al.  Non-selective cation channels, transient receptor potential channels and ischemic stroke. , 2007, Biochimica et biophysica acta.

[52]  G. Spalluto,et al.  A3 adenosine receptor antagonists delay irreversible synaptic failure caused by oxygen and glucose deprivation in the rat CA1 hippocampus in vitro , 2006, British journal of pharmacology.

[53]  Eric Gouaux,et al.  Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. , 2007, Nature.

[54]  G. Dahl,et al.  Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium , 2006, FEBS letters.

[55]  B. Fredholm,et al.  Modulation of Hippocampal Glutamatergic Transmission by ATP Is Dependent on Adenosine A1 Receptors , 2002, Journal of Pharmacology and Experimental Therapeutics.

[56]  F. Pedata,et al.  Selective adenosine A2a receptor antagonism reduces JNK activation in oligodendrocytes after cerebral ischaemia. , 2009, Brain : a journal of neurology.

[57]  F. Pedata,et al.  The adenosine A2A receptor antagonist ZM241385 enhances neuronal survival after oxygen‐glucose deprivation in rat CA1 hippocampal slices , 2009, British journal of pharmacology.

[58]  A. Surprenant,et al.  P2X7 Receptor Differentially Couples to Distinct Release Pathways for IL-1β in Mouse Macrophage1 , 2008, The Journal of Immunology.

[59]  G. Radda,et al.  Metabolic changes during experimental cerebral ischemia in hyperglycemic rats, observed by 31P and 1H magnetic resonance spectroscopy. , 1988, Stroke.

[60]  M. Tymianski,et al.  TRPMs and neuronal cell death , 2005, Pflügers Archiv.

[61]  R. Simon,et al.  Ca2+-Permeable Acid-sensing Ion Channels and Ischemic Brain Injury , 2006, The Journal of Membrane Biology.

[62]  A. Thomson,et al.  Glycine enhances NMDA-receptor mediated synaptic potentials in neocortical slices , 1989, Nature.

[63]  H. Bading,et al.  Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders , 2010, Nature Reviews Neuroscience.

[64]  Ancha Baranova,et al.  The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. , 2004, Genomics.

[65]  K. Reymann,et al.  P2 Receptor Antagonist Trinitrophenyl-Adenosine-Triphosphate Protects Hippocampus from Oxygen and Glucose Deprivation Cell Death , 2007, Journal of Pharmacology and Experimental Therapeutics.

[66]  C. Ikonomidou,et al.  Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? , 2002, The Lancet Neurology.

[67]  F. Abboud,et al.  Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[68]  A. Surprenant,et al.  Pannexin‐1 mediates large pore formation and interleukin‐1β release by the ATP‐gated P2X7 receptor , 2006, The EMBO journal.

[69]  Tian-Le Xu,et al.  Coupling between NMDA Receptor and Acid-Sensing Ion Channel Contributes to Ischemic Neuronal Death , 2005, Neuron.

[70]  E. Kawashima,et al.  The Cytolytic P2Z Receptor for Extracellular ATP Identified as a P2X Receptor (P2X7) , 1996, Science.

[71]  P. Murdock,et al.  TRPM2 Is Elevated in the tMCAO Stroke Model, Transcriptionally Regulated, and Functionally Expressed in C13 Microglia , 2006, Journal of receptor and signal transduction research.

[72]  H. Betz,et al.  Evidence for a Tetrameric Structure of Recombinant NMDA Receptors , 1998, The Journal of Neuroscience.

[73]  M. Rathbone,et al.  Glial cells express multiple ATP binding cassette proteins which are involved in ATP release , 2002, Neuroreport.

[74]  Chris E Cooper,et al.  Nitric oxide regulation of mitochondrial oxygen consumption II: Molecular mechanism and tissue physiology. , 2007, American journal of physiology. Cell physiology.

[75]  R. Nicoll,et al.  The Stoichiometry of AMPA Receptors and TARPs Varies by Neuronal Cell Type , 2009, Neuron.

[76]  M. Kelley,et al.  Ischemic preconditioning requires opening of pannexin-1/P2X7 channels not only during preconditioning but again after index ischemia at full reperfusion , 2011, Molecular and Cellular Biochemistry.

[77]  Xiaoxiang Zheng,et al.  Role for nitric oxide in permeability of hippocampal neuronal hemichannels during oxygen glucose deprivation , 2008, Journal of neuroscience research.

[78]  J. R. Lancaster Nitroxidative, nitrosative, and nitrative stress: kinetic predictions of reactive nitrogen species chemistry under biological conditions. , 2006, Chemical research in toxicology.

[79]  Loren J. Martin,et al.  Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia , 2009, Nature Neuroscience.

[80]  A. Buchan,et al.  Blockade of the AMPA receptor prevents CA1 hippocampal injury following severe but transient forebrain ischemia in adult rats , 1991, Neuroscience Letters.

[81]  Yun Wang,et al.  Activation of adenosine A3 receptors reduces ischemic brain injury in rodents , 2006, Journal of neuroscience research.

[82]  Jun Guo,et al.  Non-receptor tyrosine kinase Src is required for ischemia-stimulated neuronal cell proliferation via Raf/ERK/CREB activation in the dentate gyrus , 2009, BMC Neuroscience.

[83]  N. Rothwell,et al.  Role of P2X7 Receptors in Ischemic and Excitotoxic Brain Injury In Vivo , 2003, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[84]  P. Ascher,et al.  Glycine potentiates the NMDA response in cultured mouse brain neurons , 1987, Nature.

[85]  A. Buchan,et al.  AMPA antagonists: do they hold more promise for clinical stroke trials than NMDA antagonists? , 1993, Stroke.

[86]  G. Dahl,et al.  A permeant regulating its permeation pore: inhibition of pannexin 1 channels by ATP. , 2009, American journal of physiology. Cell physiology.

[87]  E. Nielsen,et al.  2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: a neuroprotectant for cerebral ischemia. , 1990, Science.

[88]  A. Perraud,et al.  ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology , 2001, Nature.

[89]  J. Connor,et al.  Global Ischemia Induces Downregulation of Glur2 mRNA and Increases AMPA Receptor-Mediated Ca2+ Influx in Hippocampal CA1 Neurons of Gerbil , 1997, The Journal of Neuroscience.

[90]  Roger J. Thompson,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S6 References Activation of Pannexin-1 Hemichannels Augments Aberrant Bursting in the Hippocampus , 2022 .

[91]  F. Pedata,et al.  ATP extracellular concentrations are increased in the rat striatum during in vivo ischemia , 2005, Neurochemistry International.

[92]  M. Bennett,et al.  Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[93]  K. Jacobson,et al.  Role of adenosine A3 receptors on CA1 hippocampal neurotransmission during oxygen-glucose deprivation episodes of different duration. , 2007, Biochemical pharmacology.

[94]  M. Moskowitz,et al.  A2A Adenosine Receptor Deficiency Attenuates Brain Injury Induced by Transient Focal Ischemia in Mice , 1999, The Journal of Neuroscience.

[95]  Ronen Adato,et al.  Extended long range plasmon waves in finite thickness metal film and layered dielectric materials. , 2006, Optics express.

[96]  C. Montell,et al.  The TRP Channels, a Remarkably Functional Family , 2002, Cell.

[97]  B. Siesjö,et al.  Coupling Among Energy Failure, Loss of Ion Homeostasis, and Phospholipase A2 and C Activation During Ischemia , 1993, Journal of neurochemistry.

[98]  C. Askwith,et al.  Dynorphin Opioid Peptides Enhance Acid-Sensing Ion Channel 1a Activity and Acidosis-Induced Neuronal Death , 2009, The Journal of Neuroscience.

[99]  G. Burnstock,et al.  Purinergic signalling: From normal behaviour to pathological brain function , 2011, Progress in Neurobiology.

[100]  M. Pangalos,et al.  Neuroprotective Profile of Novel Src Kinase Inhibitors in Rodent Models of Cerebral Ischemia , 2009, Journal of Pharmacology and Experimental Therapeutics.

[101]  S. Bennett,et al.  Pannexin 2 Is Expressed by Postnatal Hippocampal Neural Progenitors and Modulates Neuronal Commitment* , 2010, The Journal of Biological Chemistry.

[102]  Geoffrey Burnstock,et al.  Physiology and pathophysiology of purinergic neurotransmission. , 2007, Physiological reviews.

[103]  Jin-Moo Lee,et al.  The changing landscape of ischaemic brain injury mechanisms , 1999, Nature.

[104]  E. Vizi,et al.  Involvement of P2 purinoceptors and the nitric oxide pathway in [ 3 H ]purine outflow evoked by short-term hypoxia and hypoglycemia in rat hippocampal slices , 1999, Brain Research.

[105]  T. Yamashima Ca2+-dependent proteases in ischemic neuronal death: a conserved 'calpain-cathepsin cascade' from nematodes to primates. , 2004, Cell calcium.

[106]  E. Meacci,et al.  Pannexin 1 Is Part of the Pore Forming Unit of the P 2 x 7 Receptor Death Complex , 2008 .

[107]  H. Ellis stroke , 1997, The Lancet.

[108]  S. Masino,et al.  Metabolic Autocrine Regulation of Neurons Involves Cooperation among Pannexin Hemichannels, Adenosine Receptors, and KATP Channels , 2010, The Journal of Neuroscience.

[109]  A. Pérez-Samartín,et al.  P2X7 receptors mediate ischemic damage to oligodendrocytes , 2009, Glia.

[110]  Timothy H Murphy,et al.  Two-Photon Imaging of Stroke Onset In Vivo Reveals That NMDA-Receptor Independent Ischemic Depolarization Is the Major Cause of Rapid Reversible Damage to Dendrites and Spines , 2008, The Journal of Neuroscience.

[111]  J. Macdonald,et al.  Paradox of Ca2+ signaling, cell death and stroke , 2006, Trends in Neurosciences.

[112]  T. Dunwiddie Endogenously Released Adenosine Regulates Excitability in the In Vitro Hippocampus , 1980, Epilepsia.

[113]  Sergey Lukyanov,et al.  A ubiquitous family of putative gap junction molecules , 2000, Current Biology.

[114]  D. Clapham,et al.  The trp ion channel family , 2001, Nature Reviews Neuroscience.

[115]  O. Krishtal The ASICs: Signaling molecules? Modulators? , 2003, Trends in Neurosciences.

[116]  R. Simon,et al.  Prolonged activation of ASIC1a and the time window for neuroprotection in cerebral ischaemia. , 2006, Brain : a journal of neurology.

[117]  K. Jacobson,et al.  Chronic administration of selective adenosine A1 receptor agonist or antagonist in cerebral ischemia. , 1994, European journal of pharmacology.

[118]  G. Bernardi,et al.  Up-regulation of p2x2, p2x4 receptor and ischemic cell death: prevention by p2 antagonists , 2003, Neuroscience.

[119]  B. Miller Inhibition of TRPM2 function by PARP inhibitors protects cells from oxidative stress‐induced death , 2004, British journal of pharmacology.

[120]  R. Dermietzel,et al.  Intracellular Cysteine 346 Is Essentially Involved in Regulating Panx1 Channel Activity* , 2010, The Journal of Biological Chemistry.

[121]  H. Zimmermann Ectonucleotidases in the nervous system. , 2008, Novartis Foundation symposium.

[122]  B. Sakmann,et al.  Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression , 1994, Neuron.

[123]  D. Schneider,et al.  Neuroprotective effects of the P2 receptor antagonist PPADS on focal cerebral ischaemia‐induced injury in rats , 2006, The European journal of neuroscience.

[124]  Roger J. Thompson,et al.  Activation of neuronal P2X7 receptor-Pannexin-1 mediates death of enteric neurons during colitis , 2012, Nature Medicine.

[125]  J. Macdonald,et al.  Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. , 1999, Science.

[126]  A. Pérez-Samartín,et al.  P2X7 receptor blockade prevents ATP excitotoxicity in neurons and reduces brain damage after ischemia , 2012, Neurobiology of Disease.

[127]  Qingming Luo,et al.  Regulated ATP release from astrocytes through lysosome exocytosis , 2007, Nature Cell Biology.

[128]  R. Dingledine,et al.  Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. , 1988, Science.

[129]  S. Heinemann,et al.  Ca2+ permeability of KA-AMPA--gated glutamate receptor channels depends on subunit composition , 1991, Science.

[130]  B. Sakmann,et al.  Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit , 1992, Neuron.

[131]  Quan-guang Zhang,et al.  Positive modulation of AMPA receptors prevents downregulation of GluR2 expression and activates the Lyn‐ERK1/2‐CREB signaling in rat brain ischemia , 2009, Hippocampus.

[132]  Denise Feighan,et al.  ATP released from astrocytes during swelling activates chloride channels. , 2003, Journal of neurophysiology.

[133]  M. Mayer,et al.  Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones , 1984, Nature.

[134]  L. A. Swayne,et al.  Pannexin 1 regulates postnatal neural stem and progenitor cell proliferation , 2012, Neural Development.

[135]  K. Sakimura,et al.  Molecular diversity of the NMDA receptor channel , 1992, Nature.

[136]  Lorraine W. Lau,et al.  Expression of Ca2+-Permeable AMPA Receptor Channels Primes Cell Death in Transient Forebrain Ischemia , 2004, Neuron.

[137]  D. Attwell,et al.  Glutamate release in severe brain ischaemia is mainly by reversed uptake , 2000, Nature.

[138]  Eric Gouaux,et al.  Pore architecture and ion sites in acid sensing ion channels and P2X receptors , 2009, Nature.

[139]  M. Welsh,et al.  Neuroprotection in Ischemia Blocking Calcium-Permeable Acid-Sensing Ion Channels , 2004, Cell.

[140]  B. Sakmann,et al.  Structural determinants of ion flow through recombinant glutamate receptor channels , 1991, Science.

[141]  Tian-Le Xu,et al.  Neurobiology of Disease Extracellular Spermine Exacerbates Ischemic Neuronal Injury through Sensitization of Asic1a Channels to Extracellular Acidosis , 2022 .

[142]  R. Cunha,et al.  Presynaptic Modulation Controlling Neuronal Excitability and Epileptogenesis: Role of Kainate, Adenosine and Neuropeptide Y Receptors , 2003, Neurochemical Research.

[143]  D. Bayliss,et al.  Pannexin 1, an ATP Release Channel, Is Activated by Caspase Cleavage of Its Pore-associated C-terminal Autoinhibitory Region*♦ , 2012, The Journal of Biological Chemistry.

[144]  S. Marenco,et al.  Regional Cerebral Blood Flow in Chronic Hypertension: A Correlative Study , 1993, Stroke.

[145]  D. Schneider,et al.  The P2 Receptor Antagonist PPADS Supports Recovery from Experimental Stroke In Vivo , 2011, PloS one.

[146]  Jiankun Cui,et al.  Neuroprotection by the NR3A Subunit of the NMDA Receptor , 2009, The Journal of Neuroscience.

[147]  J. Velíšková,et al.  Targeting Pannexin1 Improves Seizure Outcome , 2011, PloS one.

[148]  D. Spray,et al.  Pannexin 1: The Molecular Substrate of Astrocyte “Hemichannels” , 2009, The Journal of Neuroscience.

[149]  J. Cheung,et al.  A Novel TRPM2 Isoform Inhibits Calcium Influx and Susceptibility to Cell Death* , 2003, The Journal of Biological Chemistry.

[150]  D. Spray,et al.  P2X7 receptor-Pannexin1 complex: pharmacology and signaling. , 2008, American journal of physiology. Cell physiology.

[151]  Bert Sakmann,et al.  Heteromeric NMDA Receptors: Molecular and Functional Distinction of Subtypes , 1992, Science.