AbstractWe prove the following quantitative form of a classical theorem of Steintiz: Letm be sufficiently large. If the convex hull of a subsetS of Euclideand-space contains a unit ball centered on the origin, then there is a subset ofS with at mostm points whose convex hull contains a solid ball also centered on the origin and havingresidual radius
% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrpepeei0xd9Wq-Jb9% vqaqFfpe0db9as0-LqLs-Jirpepeei0-bs0Fb9pgea0db9fr-xfr-x% frpeWZqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdacqGHsi% slcaaIZaGaamizamaabmaabaWaaSaaaeaacaaIYaGaamizamaaCaaa% leqabaGaaGOmaaaaaOqaaiaad2gaaaaacaGLOaGaayzkaaWaaWbaaS% qabeaacaaIYaGaai4laiaacIcacaWGKbGaeyOeI0IaaGymaiaacMca% aaGccaGGUaaaaa!4694!
$$1 - 3d\left( {\frac{{2d^2 }}{m}} \right)^{2/(d - 1)} .$$
The casem=2d was first considered by Bárányet al. [1]. We also show an upper bound on the achievable radius: the residual radius must be less than
% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrpepeei0xd9Wq-Jb9% vqaqFfpe0db9as0-LqLs-Jirpepeei0-bs0Fb9pgea0db9fr-xfr-x% frpeWZqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdacqGHsi% sldaWcaaqaaiaaigdaaeaacaaIXaGaaG4naaaadaqadaqaamaalaaa% baGaaGOmaiaadsgadaahaaWcbeqaaiaaikdaaaaakeaacaWGTbaaaa% GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaiaac+cacaGGOaGaamiz% aiabgkHiTiaaigdacaGGPaaaaOGaaiOlaaaa!4735!
$$1 - \frac{1}{{17}}\left( {\frac{{2d^2 }}{m}} \right)^{2/(d - 1)} .$$
These results have applications in the problem of computing the so-calledclosure grasps by anm-fingered robot hand. The above quantitative form of Steinitz's theorem gives a notion ofefficiency for closure grasps. The theorem also gives rise to some new problems in computational geometry. We present some efficient algorithms for these problems, especially in the two-dimensional case.
[1]
C. Carathéodory.
Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen
,
1907
.
[2]
E. Steinitz.
Bedingt konvergente Reihen und konvexe Systeme.
,
1913
.
[3]
I. S. Gradshteyn.
Table of Integrals, Series and Products, Corrected and Enlarged Edition
,
1980
.
[4]
J. Pach,et al.
Quantitative Helly-type theorems
,
1982
.
[5]
Nimrod Megiddo,et al.
Linear Programming in Linear Time When the Dimension Is Fixed
,
1984,
JACM.
[6]
Kenneth L. Clarkson,et al.
Linear Programming in O(n * (3_d)_2) Time
,
1986,
Inf. Process. Lett..
[7]
Martin E. Dyer,et al.
On a Multidimensional Search Technique and its Application to the Euclidean One-Centre Problem
,
1986,
SIAM J. Comput..
[8]
Chee-Keng Yap,et al.
A geometric consistency theorem for a symbolic perturbation scheme
,
1988,
SCG '88.
[9]
B. Mishra,et al.
Some discussion of static gripping and its stability
,
1989,
IEEE Trans. Syst. Man Cybern..
[10]
Jocelyne Pertin-Trocaz,et al.
Grasping: a state of the art
,
1989
.
[11]
Bhubaneswar Mishra.
Dexterous Manipulation: A Geometric Approach
,
1991
.