The maintenance of gastric mucosal integrity depends upon the interplay between epithelial cell proliferation and apoptosis (programmed cell death). The Bcl-2 family of proteins plays a central role in the regulation of apoptotic cell death by suppressing the apoptosis while some others such as Bax proteins promote this process. Stress-induced gastric ulcerations are accompanied by the fall in gastric mucosal cell proliferation but little is known about the influence of the stress on the apoptosis in gastric mucosa. In the present study, the gastric epithelial apoptosis was determined by means of expression of Bax and Bcl-2 mRNA in the gastric mucosa following acute stress. Wistar rats were exposed to mild water immersion and restraint stress (WRS) for 3.5 h and then sacrificed at 0, 2, 4, 6, 12 and 24 h after the termination of WRS. At each time interval after WRS, the gastric blood flow (GBF) and the proliferating cell nuclear antigen (PCNA) labeling were determined. The apoptosis rate in the gastric mucosa was determined by the terminal deoxynucleotidyl transferase (TDT) mediated 2-deoxyuridine 5-triphosphate (dUTP)-biotin nick end-labeling (TUNEL) staining method and the expression of Bax and Bcl-2 mRNA was analyzed by RT-PCR and southern blot hybridization. WRS produced multiple erosions accompanied by the fall in GBF and PCNA index and by a dramatic enhancement in gastric epithelial apoptosis rate reaching maximum at 4 h after exposure to WRS. Following 6 and 12 h after the end of WRS the apoptotis declined but even 24 h after WRS it failed to reach the value recorded in intact gastric mucosa. The PCNA index was still significantly inhibited at 2 h after WRS but then showed significant rise at 6 and 12 h to reach at 24 h after WRS, the level similar to that measured in intact gastric mucosa. The expression of Bax mRNA was detected in intact gastric mucosa and gradually increased in first 4 h after WRS to decline at 24 h to the level not significantly different from that observed in the intact mucosa. In contrast, the expression of Bcl-2 mRNA was almost undetectable during first 4 h but showed strong signal at 6 and 12 h to decline to the control level 24 h after WRS. We conclude that: 1. Healing of WRS lesions involves an increase in GBF and mucosal cell proliferation and 2. The enhancement in gastric epithelial apoptosis accompanies the mucosal damage induced by stress and this appears to be triggered by the shift from the cell death effector Bax to the cell death repressor Bcl-2 protein.