Nonlocal interactions by repulsive–attractive potentials: Radial ins/stability

Abstract We investigate nonlocal interaction equations with repulsive–attractive radial potentials. Such equations describe the evolution of a continuum density of particles in which they repulse (resp. attract) each other in the short (resp. long) range. We prove that under some conditions on the potential, radially symmetric solutions converge exponentially fast in some transport distance toward a spherical shell stationary state. Otherwise we prove that it is not possible for a radially symmetric solution to converge weakly toward the spherical shell stationary state. We also investigate under which condition it is possible for a non-radially symmetric solution to converge toward a singular stationary state supported on a general hypersurface. Finally we provide a detailed analysis of the specific case of the repulsive–attractive power law potential as well as numerical results.

[1]  Salvatore Torquato,et al.  Optimized interactions for targeted self-assembly: application to a honeycomb lattice. , 2005, Physical review letters.

[2]  E. Tadmor,et al.  From particle to kinetic and hydrodynamic descriptions of flocking , 2008, 0806.2182.

[3]  Andrea L. Bertozzi,et al.  Blow-up in multidimensional aggregation equations with mildly singular interaction kernels , 2009 .

[4]  Jesús Rosado,et al.  Uniqueness of Bounded Solutions to Aggregation Equations by Optimal Transport Methods , 2009 .

[5]  Andrea L. Bertozzi,et al.  Characterization of Radially Symmetric Finite Time Blowup in Multidimensional Aggregation Equations , 2012, SIAM J. Math. Anal..

[6]  A. Mogilner,et al.  Mathematical Biology Mutual Interactions, Potentials, and Individual Distance in a Social Aggregation , 2003 .

[7]  Andrea L. Bertozzi,et al.  Swarming Patterns in a Two-Dimensional Kinematic Model for Biological Groups , 2004, SIAM J. Appl. Math..

[8]  E. Caglioti,et al.  A kinetic equation for granular media , 2009 .

[9]  A. Bertozzi,et al.  Stability of ring patterns arising from two-dimensional particle interactions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  E Weinan,et al.  Dynamics of vortex liquids in Ginzburg-Landau theories with applications to superconductivity. , 1994, Physical review. B, Condensed matter.

[11]  Ping Zhang,et al.  Global solutions to vortex density equations arising from sup-conductivity , 2005 .

[12]  A. Bertozzi,et al.  A Nonlocal Continuum Model for Biological Aggregation , 2005, Bulletin of mathematical biology.

[13]  Hongjie Dong The Aggregation Equation with Power-Law Kernels: Ill-Posedness, Mass Concentration and Similarity Solutions , 2011 .

[14]  Andrew J. Bernoff,et al.  A Primer of Swarm Equilibria , 2010, SIAM J. Appl. Dyn. Syst..

[15]  A. Stevens,et al.  Mass-Selection in Alignment Models with Non-Deterministic Effects , 2009 .

[16]  R. McCann STABLE ROTATING BINARY STARS AND FLUID IN A TUBE , 2006 .

[17]  L. Ambrosio,et al.  A gradient flow approach to an evolution problem arising in superconductivity , 2008 .

[18]  Björn Birnir,et al.  An ODE Model of the Motion of Pelagic Fish , 2007 .

[19]  Razvan C. Fetecau,et al.  Swarm dynamics and equilibria for a nonlocal aggregation model , 2011 .

[20]  A. Mogilner,et al.  A non-local model for a swarm , 1999 .

[21]  C. Villani,et al.  Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media , 2006 .

[22]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[23]  Thomas Laurent,et al.  Local and Global Existence for an Aggregation Equation , 2007 .

[24]  Giuseppe Toscani,et al.  Finite speed of propagation in porous media by mass transportation methods , 2004 .

[25]  A. Bertozzi,et al.  Stability of ring patterns arising from 2 D particle interactions , 2011 .

[26]  J. A. Carrillo,et al.  Numerical Simulation of Diffusive and Aggregation Phenomena in Nonlinear Continuity Equations by Evolving Diffeomorphisms , 2009, SIAM J. Sci. Comput..

[27]  Gaël Raoul,et al.  Nonlocal interaction equations: Stationary states and stability analysis , 2012, Differential and Integral Equations.

[28]  B. Perthame,et al.  Mathematik in den Naturwissenschaften Leipzig An Integro-Differential Equation Model for Alignment and Orientational Aggregation , 2007 .

[29]  J. Doye,et al.  The effect of the range of the potential on the structures of clusters , 1995 .

[30]  T. Kolokolnikov,et al.  PREDICTING PATTERN FORMATION IN PARTICLE INTERACTIONS , 2012 .

[31]  José A. Carrillo,et al.  Confinement in nonlocal interaction equations , 2012 .

[32]  Klemens Fellner,et al.  Stability of stationary states of non-local equations with singular interaction potentials , 2011, Math. Comput. Model..

[33]  José A. Carrillo,et al.  Infinite Time Aggregation for the Critical Patlak-Keller-Segel model in R 2 , 2007 .

[34]  Ping Zhang,et al.  On the hydrodynamic limit of Ginzburg-Landau vortices , 1999 .

[35]  Alex Mogilner,et al.  An Integrodifferential Model for Orientational Distributions of F-actin in Cells , 1998, SIAM J. Appl. Math..

[36]  Andrea L. Bertozzi,et al.  Finite-time blow-up of L∞-weak solutions of an aggregation equation , 2010 .

[37]  C. Villani,et al.  Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates , 2003 .

[38]  Edoardo Mainini A global uniqueness result for an evolution problem arising in superconductivity , 2009 .

[39]  F. Poupaud,et al.  High-field Limit for the Vlasov-poisson-fokker-planck System , 2022 .

[40]  C. Villani Topics in Optimal Transportation , 2003 .

[41]  G. Raoul,et al.  STABLE STATIONARY STATES OF NON-LOCAL INTERACTION EQUATIONS , 2010 .

[42]  G. Toscani,et al.  Long-Time Asymptotics of Kinetic Models of Granular Flows , 2004 .

[43]  Sylvia Serfaty,et al.  A rigorous derivation of a free-boundary problem arising in superconductivity , 2000 .

[44]  Giuseppe Toscani,et al.  One-dimensional kinetic models of granular flows , 2000 .

[45]  J. Carrillo,et al.  Double milling in self-propelled swarms from kinetic theory , 2009 .

[46]  S. Smale,et al.  On the mathematics of emergence , 2007 .

[47]  Benoît Perthame,et al.  Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions , 2006 .

[48]  David Uminsky,et al.  On Soccer Balls and Linearized Inverse Statistical Mechanics , 2012, J. Nonlinear Sci..

[49]  Gabor T. Herman,et al.  Recovery of the absorption coefficient from diffused reflected light using a discrete diffusive model , 1998 .

[50]  J. Carrillo,et al.  GLOBAL-IN-TIME WEAK MEASURE SOLUTIONS, FINITE-TIME AGGREGATION AND CONFINEMENT FOR NONLOCAL INTERACTION EQUATIONS , 2009 .

[51]  Benoît Perthame,et al.  Optimal critical mass in the two dimensional Keller–Segel model in R2 , 2004 .

[52]  Lamia Youseff,et al.  Discrete and continuous models of the dynamics of pelagic fish: Application to the capelin , 2008, Math. Comput. Simul..

[53]  T. Laurent,et al.  Lp theory for the multidimensional aggregation equation , 2011 .

[54]  Jesús Rosado,et al.  Asymptotic Flocking Dynamics for the Kinetic Cucker-Smale Model , 2010, SIAM J. Math. Anal..

[55]  Felipe Cucker,et al.  Emergent Behavior in Flocks , 2007, IEEE Transactions on Automatic Control.

[56]  Jos'e A. Carrillo,et al.  A well-posedness theory in measures for some kinetic models of collective motion , 2009, 0907.3901.

[57]  L. Ambrosio,et al.  Gradient flow of the Chapman–Rubinstein–Schatzman model for signed vortices , 2011 .

[58]  D. Chandler,et al.  Dynamic pathways for viral capsid assembly. , 2005, Biophysical journal.

[59]  Qiang Du,et al.  Existence of Weak Solutions to Some Vortex Density Models , 2003, SIAM J. Math. Anal..

[60]  Andrew J. Bernoff,et al.  A model for rolling swarms of locusts , 2007, q-bio/0703016.

[61]  Laurent Gosse,et al.  Lagrangian Numerical Approximations to One-Dimensional Convolution-Diffusion Equations , 2006, SIAM J. Sci. Comput..

[62]  J. Carrillo,et al.  Aggregation Equation with Growing at Infinity Attractive-repulsive Potentials , 2012 .

[63]  Sylvia Serfaty,et al.  Vortices in the Magnetic Ginzburg-Landau Model , 2006 .

[64]  R. Fetecau,et al.  Equilibria of biological aggregations with nonlocal repulsive-attractive interactions , 2011, 1109.2864.

[65]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[66]  Andrea L. Bertozzi,et al.  Finite-Time Blow-up of Solutions of an Aggregation Equation in Rn , 2007 .

[67]  A. Ros,et al.  Properly embedded minimal surfaces with finite total curvature , 2002 .

[68]  D. Wales Energy landscapes of clusters bound by short-ranged potentials. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[69]  José A. Carrillo,et al.  Convergence of the Mass-Transport Steepest Descent Scheme for the Subcritical Patlak-Keller-Segel Model , 2008, SIAM J. Numer. Anal..