High-throughput detection of prostate cancer in histological sections using probabilistic pairwise Markov models

[1]  Stuart Geman,et al.  Markov Random Field Image Models and Their Applications to Computer Vision , 2010 .

[2]  Anant Madabhushi,et al.  A hierarchical spectral clustering and nonlinear dimensionality reduction scheme for detection of prostate cancer from magnetic resonance spectroscopy (MRS). , 2009, Medical physics.

[3]  Michel Bolla,et al.  [EAU guidelines on prostate cancer]. , 2009, Actas urologicas espanolas.

[4]  Xin Liu,et al.  Prostate Cancer Segmentation With Simultaneous Estimation of Markov Random Field Parameters and Class , 2009, IEEE Transactions on Medical Imaging.

[5]  Po-Whei Huang,et al.  Automatic Classification for Pathological Prostate Images Based on Fractal Analysis , 2009, IEEE Transactions on Medical Imaging.

[6]  Gerardo Fernandez,et al.  Systems pathology approach for the prediction of prostate cancer progression after radical prostatectomy. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[7]  Nelson D. A. Mascarenhas,et al.  Pseudolikelihood Equations for Potts MRF Model Parameter Estimation on Higher Order Neighborhood Systems , 2008, IEEE Geoscience and Remote Sensing Letters.

[8]  Richard Szeliski,et al.  A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Anant Madabhushi,et al.  Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[10]  Mikhail Teverovskiy,et al.  Multifeature Prostate Cancer Diagnosis and Gleason Grading of Histological Images , 2007, IEEE Transactions on Medical Imaging.

[11]  Mikhail Teverovskiy,et al.  Improved prediction of prostate cancer recurrence through systems pathology. , 2007, The Journal of clinical investigation.

[12]  R. A. Zoroofi,et al.  An image analysis approach for automatic malignancy determination of prostate pathological images , 2007, Cytometry. Part B, Clinical cytometry.

[13]  Anant Madabhushi,et al.  AUTOMATED GRADING OF PROSTATE CANCER USING ARCHITECTURAL AND TEXTURAL IMAGE FEATURES , 2007, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[14]  M. Kattan,et al.  Preoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. , 2006, Journal of the National Cancer Institute.

[15]  Suyash P. Awate,et al.  Unsupervised Texture Segmentation with Nonparametric Neighborhood Statistics , 2006, ECCV.

[16]  Richard Szeliski,et al.  A Comparative Study of Energy Minimization Methods for Markov Random Fields , 2006, ECCV.

[17]  Lennart Franzén,et al.  How well does the Gleason score predict prostate cancer death? A 20-year followup of a population based cohort in Sweden. , 2006, The Journal of urology.

[18]  Aly A. Farag,et al.  Precise segmentation of multimodal images , 2006, IEEE Transactions on Image Processing.

[19]  Mahul B Amin,et al.  Update on the Gleason Grading System for Prostate Cancer: Results of an International Consensus Conference of Urologic Pathologists , 2006, Advances in anatomic pathology.

[20]  Dimitris N. Metaxas,et al.  Automated detection of prostatic adenocarcinoma from high-resolution ex vivo MRI , 2005, IEEE Transactions on Medical Imaging.

[21]  Michael W Kattan,et al.  Postoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[22]  L. Egevad,et al.  The 2005 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma , 2005, The American journal of surgical pathology.

[23]  Ferran Algaba,et al.  Gleason grading of prostate cancer in needle biopsies or radical prostatectomy specimens: contemporary approach, current clinical significance and sources of pathology discrepancies , 2005, BJU international.

[24]  William J Catalona,et al.  Cancer progression and survival rates following anatomical radical retropubic prostatectomy in 3,478 consecutive patients: long-term results. , 2004, The Journal of urology.

[25]  James Diamond,et al.  The use of morphological characteristics and texture analysis in the identification of tissue composition in prostatic neoplasia. , 2004, Human pathology.

[26]  Rupert Paget,et al.  Strong Markov random field model , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Hamid Soltanian-Zadeh,et al.  Multiwavelet grading of pathological images of prostate , 2003, IEEE Transactions on Biomedical Engineering.

[28]  Abbes Amira,et al.  A multispectral computer vision system for automatic grading of prostatic neoplasia , 2002, Proceedings IEEE International Symposium on Biomedical Imaging.

[29]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[30]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[31]  Luc Van Gool,et al.  A Compact Model for Viewpoint Dependent Texture Synthesis , 2000, SMILE.

[32]  James S. Duncan,et al.  Medical Image Analysis , 1999, IEEE Pulse.

[33]  M. Kattan,et al.  Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer. , 1999, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[34]  Michael Werman,et al.  Similarity Measurement Method for the Classification of Architecturally Differentiated Images , 1999, Comput. Biomed. Res..

[35]  Josef Kittler,et al.  Region growing: a new approach , 1998, IEEE Trans. Image Process..

[36]  Rupert Paget,et al.  Texture synthesis via a noncausal nonparametric multiscale Markov random field , 1998, IEEE Trans. Image Process..

[37]  José M. N. Leitão,et al.  Unsupervised image restoration and edge location using compound Gauss-Markov random fields and the MDL principle , 1997, IEEE Trans. Image Process..

[38]  Vijay K. Jain,et al.  Markov random field for tumor detection in digital mammography , 1995, IEEE Trans. Medical Imaging.

[39]  Anil K. Jain,et al.  MRF model-based algorithms for image segmentation , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[40]  D. Geman Random fields and inverse problems in imaging , 1990 .

[41]  Nuggehally Sampath Jayant,et al.  An adaptive clustering algorithm for image segmentation , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[42]  Thrasyvoulos N. Pappas,et al.  An Adaptive Clustering Algorithm For Image Segmentation , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[43]  T. Guthrie,et al.  Prostate cancer. , 2020, American family physician.

[44]  Tomaso Poggio,et al.  Probabilistic Solution of Ill-Posed Problems in Computational Vision , 1987 .

[45]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[46]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[48]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[49]  Ray A. Jarvis,et al.  On the Identification of the Convex Hull of a Finite Set of Points in the Plane , 1973, Inf. Process. Lett..

[50]  David G. Stork,et al.  Pattern Classification , 1973 .

[51]  Gleason Df Classification of prostatic carcinomas. , 1966 .

[52]  D. Gleason Classification of prostatic carcinomas. , 1966, Cancer chemotherapy reports.

[53]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[54]  R. B. Potts Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.