Phase change materials and their application to random access memory technology

[1]  S. Ovshinsky Reversible Electrical Switching Phenomena in Disordered Structures , 1968 .

[2]  D. Emin,et al.  Electrical Transport and Structural Properties of Bulk As-Te-I, As-Te-Ge, and As-Te Chalcogenide Glasses , 1973 .

[3]  R. Shanks,et al.  Chalcogenide memory materials , 1979 .

[4]  N. Yamada,et al.  Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory , 1991 .

[5]  Nonvolatile Memory Based on Phase Transition in Chalcogenide Thin Film , 1993 .

[6]  Norikazu Ohshima,et al.  Crystallization of germanium–antimony–tellurium amorphous thin film sandwiched between various dielectric protective films , 1996 .

[7]  S. Y. Kim,et al.  Investigation of crystallization behavior of sputter-deposited nitrogen-doped amorphous Ge2Sb2Te5 thin films , 2000 .

[8]  Study of the Ag–In–Te ternary system , 1999 .

[9]  Myong R. Kim,et al.  Crystal Structure and Microstructure of Nitrogen-Doped Ge2Sb2Te5 Thin Film , 2000 .

[10]  V. Weidenhof,et al.  Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements , 2000 .

[11]  M Mansuripur,et al.  Measurement of the thermal conductivity of erasable phase-change optical recording media. , 2000, Applied optics.

[12]  M. Lankhorst,et al.  Modelling glass transition temperatures of chalcogenide glasses. Applied to phase-change optical recording materials , 2002 .

[13]  Preparation of ferroelectric thin films using sol-gel solutions dissolved in supercritical carbon dioxide , 2003 .

[14]  Minoru Kumeda,et al.  Nonvolatile Memory Based on Phase Change in Se–Sb–Te Glass , 2003 .

[15]  M. Lankhorst,et al.  Low-cost and nanoscale non-volatile memory concept for future silicon chips , 2005, Nature materials.

[16]  S. G. Bishop,et al.  Thermal conductivity of phase-change material Ge2Sb2Te5 , 2006 .

[17]  M. Gijs,et al.  Defect structure in micropillars using x-ray microdiffraction , 2006 .

[18]  Kuan-Neng Chen,et al.  Irreversible modification of Ge2Sb2Te5 phase change material by nanometer-thin Ti adhesion layers in a device-compatible stack , 2007 .

[19]  Xiaoqian Wei,et al.  Thickness Dependent Nano-Crystallization in Ge2Sb2Te5 Films and Its Effect on Devices , 2007 .

[20]  A. Kellock,et al.  Effect of Al and Cu doping on the crystallization properties of the phase change materials SbTe and GeSb , 2007 .

[21]  M. Meyyappan,et al.  One-Dimensional Phase-Change Nanostructure: Germanium Telluride Nanowire , 2007 .

[22]  Eric Pop,et al.  Thickness and stoichiometry dependence of the thermal conductivity of GeSbTe films , 2007 .

[23]  Dolores C. Miller,et al.  Direct observation of amorphous to crystalline phase transitions in nanoparticle arrays of phase change materials , 2007 .

[24]  Matthias Wuttig,et al.  Calorimetric measurements of structural relaxation and glass transition temperatures in sputtered films of amorphous Te alloys used for phase change recording , 2007 .

[25]  Simone Raoux,et al.  Crystallization properties of ultrathin phase change films , 2008 .