Expression, purification, and characterization of biologically active full-length Mason-Pfizer monkey virus (MPMV) Pr78Gag

[1]  J. Lingappa,et al.  Identifying the assembly intermediate in which Gag first associates with unspliced HIV-1 RNA suggests a novel model for HIV-1 RNA packaging , 2018, PLoS pathogens.

[2]  S. Bernacchi,et al.  Retroviral RNA Dimerization: From Structure to Functions , 2018, Front. Microbiol..

[3]  Pierre B. Cattenoz,et al.  In cell mutational interference mapping experiment (in cell MIME) identifies the 5′ polyadenylation signal as a dual regulator of HIV-1 genomic RNA production and packaging , 2018, Nucleic acids research.

[4]  J. Lingappa,et al.  HIV-1 initiates genomic RNA packaging in a unique subset of host RNA granules , 2017, bioRxiv.

[5]  M. Bewley,et al.  A non-cleavable hexahistidine affinity tag at the carboxyl-terminus of the HIV-1 Pr55Gag polyprotein alters nucleic acid binding properties. , 2017, Protein expression and purification.

[6]  W. McKinstry,et al.  The thermodynamics of Pr55Gag-RNA interaction regulate the assembly of HIV , 2017, PLoS pathogens.

[7]  N. Sherer,et al.  Subcellular Localization of HIV-1 gag-pol mRNAs Regulates Sites of Virion Assembly , 2017, Journal of Virology.

[8]  J. Mak,et al.  HIV-1 Pr55Gag binds genomic and spliced RNAs with different affinity and stoichiometry , 2017, RNA biology.

[9]  R. Hrabal,et al.  Membrane Interactions of the Mason-Pfizer Monkey Virus Matrix Protein and Its Budding Deficient Mutants. , 2016, Journal of molecular biology.

[10]  Ginger M. Pocock,et al.  Nuclear Export Signal Masking Regulates HIV-1 Rev Trafficking and Viral RNA Nuclear Export , 2016, Journal of Virology.

[11]  F. Mustafa,et al.  Cross- and Co-Packaging of Retroviral RNAs and Their Consequences , 2016, Viruses.

[12]  L. Parent,et al.  Orchestrating the Selection and Packaging of Genomic RNA by Retroviruses: An Ensemble of Viral and Host Factors , 2016, Viruses.

[13]  A. Rein,et al.  On the Selective Packaging of Genomic RNA by HIV-1 , 2016, Viruses.

[14]  R. Smyth,et al.  The Life-Cycle of the HIV-1 Gag–RNA Complex , 2016, Viruses.

[15]  M. Ferrer,et al.  Imaging HIV-1 RNA dimerization in cells by multicolor super-resolution and fluctuation microscopies , 2016, Nucleic acids research.

[16]  V. Vivet-Boudou,et al.  Packaging of Mason-Pfizer monkey virus (MPMV) genomic RNA depends upon conserved long-range interactions (LRIs) between U5 and gag sequences , 2016, RNA.

[17]  J. Briggs,et al.  Nucleic Acid Binding by Mason-Pfizer Monkey Virus CA Promotes Virus Assembly and Genome Packaging , 2016, Journal of Virology.

[18]  F. Jossinet,et al.  Mutational interference mapping experiment (MIME) for studying RNA structure and function , 2015, Nature Methods.

[19]  V. Vivet-Boudou,et al.  Structural basis of genomic RNA (gRNA) dimerization and packaging determinants of mouse mammary tumor virus (MMTV) , 2014, Retrovirology.

[20]  J. Briggs,et al.  Structure of the immature HIV-1 capsid in intact virus particles at 8.8 Å resolution , 2014, Nature.

[21]  W. McKinstry,et al.  Expression and purification of soluble recombinant full length HIV-1 Pr55(Gag) protein in Escherichia coli. , 2014, Protein expression and purification.

[22]  F. Jossinet,et al.  Specific recognition of the HIV-1 genomic RNA by the Gag precursor , 2014, Nature Communications.

[23]  L. Sardo,et al.  Life of psi: how full-length HIV-1 RNAs become packaged genomes in the viral particles. , 2014, Virology.

[24]  R. Hrabal,et al.  Interaction of Mason-Pfizer monkey virus matrix protein with plasma membrane , 2014, Front. Microbiol..

[25]  V. Vivet-Boudou,et al.  SHAPE analysis of the 5′ end of the Mason-Pfizer monkey virus (MPMV) genomic RNA reveals structural elements required for genome dimerization , 2013, RNA.

[26]  F. Mustafa,et al.  Sequences within Both the 5′ UTR and Gag Are Required for Optimal In Vivo Packaging and Propagation of Mouse Mammary Tumor Virus (MMTV) Genomic RNA , 2012, PloS one.

[27]  Norman E. Davey,et al.  Structure of the immature retroviral capsid at 8 Å resolution by cryo-electron microscopy , 2012, Nature.

[28]  Xiao Heng,et al.  NMR Detection of Structures in the HIV-1 5′-Leader RNA That Regulate Genome Packaging , 2011, Science.

[29]  B. Berkhout,et al.  Role of HIV-1 RNA and protein determinants for the selective packaging of spliced and unspliced viral RNA and host U6 and 7SL RNA in virus particles , 2011, Nucleic acids research.

[30]  N. Jouvenet,et al.  Cell biology of retroviral RNA packaging , 2011, RNA biology.

[31]  F. Mustafa,et al.  Optimal Packaging of FIV Genomic RNA Depends upon a Conserved Long-range Interaction and a Palindromic Sequence within gag , 2010, Journal of molecular biology.

[32]  A. Telesnitsky,et al.  Retroviral RNA Dimerization and Packaging: The What, How, When, Where, and Why , 2010, PLoS pathogens.

[33]  N. Montiel REVIEW ARTICLE: An updated review of simian betaretrovirus (SRV) in macaque hosts , 2010, Journal of medical primatology.

[34]  T. Rizvi,et al.  A G-C-rich palindromic structural motif and a stretch of single-stranded purines are required for optimal packaging of Mason-Pfizer monkey virus (MPMV) genomic RNA. , 2010, Journal of molecular biology.

[35]  J. L. Affranchino,et al.  In vitro assembly of the feline immunodeficiency virus Gag polyprotein. , 2010, Virus research.

[36]  M. Summers,et al.  An RNA structural switch regulates diploid genome packaging by Moloney murine leukemia virus. , 2010, Journal of molecular biology.

[37]  Jianbo Chen,et al.  Probing the HIV-1 Genomic RNA Trafficking Pathway and Dimerization by Genetic Recombination and Single Virion Analyses , 2009, PLoS pathogens.

[38]  K. Überla,et al.  Rev Proteins of Human and Simian Immunodeficiency Virus Enhance RNA Encapsidation , 2007, PLoS pathogens.

[39]  F. Mustafa,et al.  Both the 5' and 3' LTRs of FIV contain minor RNA encapsidation determinants compared to the two core packaging determinants within the 5' untranslated region and gag. , 2006, Microbes and infection.

[40]  C. Liang,et al.  The T12I mutation within the SP1 region of Gag restricts packaging of spliced viral RNA into human immunodeficiency virus type 1 with mutated RNA packaging signals and mutated nucleocapsid sequence. , 2006, Virology.

[41]  R. Weldon,et al.  The pp24 phosphoprotein of Mason-Pfizer monkey virus contributes to viral genome packaging , 2005, Retrovirology.

[42]  M. Summers,et al.  How retroviruses select their genomes , 2005, Nature Reviews Microbiology.

[43]  F. Mustafa,et al.  Relative activity of the feline immunodeficiency virus promoter in feline and primate cell lines. , 2005, Microbes and infection.

[44]  M. Summers,et al.  Structural basis for packaging the dimeric genome of Moloney murine leukaemia virus , 2004, Nature.

[45]  M. Wainberg,et al.  Effects of a Single Amino Acid Substitution within thep2 Region of Human Immunodeficiency Virus Type 1 on Packagingof Spliced ViralRNA , 2003, Journal of Virology.

[46]  F. Mustafa,et al.  Sequences within both the 5' untranslated region and the gag gene are important for efficient encapsidation of Mason-Pfizer monkey virus RNA. , 2003, Virology.

[47]  E. Hunter,et al.  Sequences in the 5' leader of Mason-Pfizer monkey virus which affect viral particle production and genomic RNA packaging: development of MPMV packaging cell lines. , 2001, Virology.

[48]  H. Issaq,et al.  Modulation of HIV-like particle assembly in vitro by inositol phosphates , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[49]  N. Jewell,et al.  In the beginning: genome recognition, RNA encapsidation and the initiation of complex retrovirus assembly. , 2000, The Journal of general virology.

[50]  E. Hunter,et al.  Separate Assembly and Transport Domains within the Gag Precursor of Mason-Pfizer Monkey Virus , 1999, Journal of Virology.

[51]  A. Rein,et al.  In Vitro Assembly Properties of Human Immunodeficiency Virus Type 1 Gag Protein Lacking the p6 Domain , 1999, Journal of Virology.

[52]  J. Kaye,et al.  Nonreciprocal Packaging of Human Immunodeficiency Virus Type 1 and Type 2 RNA: a Possible Role for the p2 Domain of Gag in RNA Encapsidation , 1998, Journal of Virology.

[53]  T. Rizvi,et al.  Mason-Pfizer monkey virus (MPMV) constitutive transport element (CTE) functions in a position-dependent manner. , 1997, Virology.

[54]  V. Vogt,et al.  In vitro assembly of virus-like particles with Rous sarcoma virus Gag deletion mutants: identification of the p10 domain as a morphological determinant in the formation of spherical particles , 1997, Journal of virology.

[55]  T. Rizvi,et al.  Role of Mason-Pfizer monkey virus (MPMV) constitutive transport element (CTE) in the propagation of MPMV vectors by genetic complementation using homologous/heterologous env genes. , 1996, Virology.

[56]  A. Aldovini,et al.  Charged amino acid residues of human immunodeficiency virus type 1 nucleocapsid p7 protein involved in RNA packaging and infectivity , 1996, Journal of virology.

[57]  T. Rizvi,et al.  Rev/RRE-independent Mason-Pfizer monkey virus constitutive transport element-dependent propagation of SIVmac239 vectors using a single round of replication assay. , 1996, Virology.

[58]  E. Hunter,et al.  Synthesis and assembly of retrovirus Gag precursors into immature capsids in vitro , 1996, Journal of virology.

[59]  P. Štrop,et al.  Cloning, Bacterial Expression, and Characterization of the Mason-Pfizer Monkey Virus Proteinase (*) , 1995, The Journal of Biological Chemistry.

[60]  E. Hunter,et al.  Secondary structure model of the Mason-Pfizer monkey virus 5' leader sequence: identification of a structural motif common to a variety of retroviruses , 1995, Journal of virology.

[61]  E. Hunter,et al.  Efficient in vivo and in vitro assembly of retroviral capsids from Gag precursor proteins expressed in bacteria , 1995, Journal of virology.

[62]  K. Jeang,et al.  A small element from the Mason-Pfizer monkey virus genome makes human immunodeficiency virus type 1 expression and replication Rev-independent. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[63]  J. Luban,et al.  Mapping of functionally important residues of a cysteine-histidine box in the human immunodeficiency virus type 1 nucleocapsid protein , 1993, Journal of virology.

[64]  C. Carter,et al.  Assembly of recombinant human immunodeficiency virus type 1 capsid protein in vitro , 1992, Journal of virology.

[65]  R. Vile,et al.  Identification of a generalised packaging sequence for D-type retroviruses and generation of a D-type retroviral vector. , 1992, Virology.

[66]  E. Hunter,et al.  A single amino acid substitution within the matrix protein of a type D retrovirus converts its morphogenesis to that of a type C retrovirus , 1990, Cell.

[67]  R. Young,et al.  Mutations of RNA and protein sequences involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus , 1990, Journal of virology.

[68]  R. Gorelick,et al.  Point mutants of Moloney murine leukemia virus that fail to package viral RNA: evidence for specific RNA recognition by a "zinc finger-like" protein sequence. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[69]  E. Gouilloud,et al.  Mutations in Rous sarcoma virus nucleocapsid protein p12 (NC): deletions of Cys-His boxes , 1988, Journal of virology.

[70]  L. Arthur,et al.  Immunodeficiency in rhesus monkeys associated with the original Mason-Pfizer monkey virus. , 1986, Journal of the National Cancer Institute.

[71]  S. Wain-Hobson,et al.  Nucleotide sequence of Mason-Pfizer monkey virus: An immunosuppressive D-type retrovirus , 1986, Cell.

[72]  G. Smythers,et al.  Purification and N-terminal amino acid sequence comparisons of structural proteins from retrovirus-D/Washington and Mason-Pfizer monkey virus , 1985, Journal of virology.

[73]  J. Bradac,et al.  Polypeptides of Mason-Pfizer monkey virus. I. Synthesis and processing of the gag-gene products. , 1984, Virology.

[74]  D. Fine,et al.  Responses of infant rhesus monkeys to inoculation with Mason-Pfizer monkey virus materials. , 1975, Journal of the National Cancer Institute.

[75]  A. Lever HIV-1 RNA packaging. , 2007, Advances in pharmacology.

[76]  F. Mustafa,et al.  Mutational analysis of the predicted secondary RNA structure of the Mason-Pfizer monkey virus packaging signal. , 2004, Virus research.