Axiomatizations of Hyperbolic and Absolute Geometries

A survey of finite first-order axiomatizations for hyperbolic and absolute geometries. 1. Hyperbolic Geometry Elementary Hyperbolic Geometry as conceived by Hilbert To axiomatize a geometry one needs a language in which to write the axioms, and a logic by means of which to deduce consequences from those axioms. Based on the work of Skolem, Hilbert and Ackermann, Gödel, and Tarski, a consensus had been reached by the end of the first half of the 20th century that, as Skolem had emphasized since 1923, “if we are interested in producing an axiomatic system, we can only use first-order logic” ([21, p. 472]). The language of first-order logic consists of the logical symbols , , , , , a denumerable list of symbols called individual variables, as well as denumerable lists of -ary predicate (relation) and function (operation) symbols for all natural numbers , as well as individual constants (which may be thought of as 0-ary function symbols), together with two quantifiers, and which can bind only individual variables, but not sets of individual variables nor predicate or function symbols. Its axioms and rules of deduction are those of classical logic. Axiomatizations in first-order logic preclude the categoricity of the axiomatized models. That is, one cannot provide an axiom system in first-order logic which admits as its only model a geometry over the field of real numbers, as Hilbert [31] had done (in a very strong logic) in his Grundlagen der Geometrie. By the Löwenheim-Skolem theorem, if such an axiom system admits an infinite model, then it will admit models of any given infinite cardinality.

[1]  Harmonic mappings and hyperbolic Plücker transformations , 2001 .

[2]  Victor Pambuccian Constructive Axiomatization of Plane Hyperbolic Geometry , 2001, Math. Log. Q..

[3]  D. Hilbert,et al.  Neue Begründung der Bolyai-Lobatschefskyschen Geometrie , 1903 .

[4]  K. Sörensen Eine Bemerkung über absolute Ebenen , 1999 .

[5]  Kay Srensen,et al.  Ebenen mit Kongruenz , 1984 .

[6]  Patrick Suppes,et al.  Quantifier-free axioms for constructive plane geometry , 1968 .

[7]  Arthur Cayley XXIII. A fifth memoir upon quantics , 1858, Philosophical Transactions of the Royal Society of London.

[8]  Emanuel Sperner Ein gruppentheoretischer Beweis des Satzes von Desargues in der absoluten Axiomatik , 1954 .

[9]  R. Hartshorne Geometry: Euclid and Beyond , 2005 .

[10]  Maria Moszyńska Theory of equidistance and betweenness relations in regular metric spaces , 1977 .

[11]  Victor Pambuccian Zum Stufenaufbau des Parallelenaxioms , 1994 .

[12]  Victor Pambuccian FRAGMENTS OF EUCLIDEAN AND HYPERBOLIC GEOMETRY , 2001 .

[13]  Victor Pambuccian Constructive axiomatizations of plane absolute, Euclidean and hyperbolic geometry , 2001 .

[14]  A. Tarski,et al.  Metamathematische Methoden in der Geometrie , 1983 .

[15]  P. Szász Unmittelbare einführung Weierstrassscher homogenen Koordinaten in der hyperbolischen Ebene auf Grund der Hilbertschen Endenrechnung , 1958 .

[16]  Elisabetta Gabrieli Loops with reflection germ: a characterization of absolute planes , 1999, Discret. Math..

[17]  W. A. Coppel Foundations of Convex Geometry , 1998 .

[18]  G. M. Grundlagen der Geometrie , 1909, Nature.

[19]  Wanda Szmielew A new analytic approach to hyperbolic geometry , 1961 .

[20]  D. Scott Dimension in Elementary Euclidean Geometry1 , 1959 .

[21]  V. Peckhaus Regressive Analysis , 2000 .

[22]  W. Pejas Eine algebraische Beschreibung der angeordneten Ebenen mit nichteuklidischer Metrik , 1964 .

[23]  Małgorzata Grochowska-Prazmowska A proof of Pasch's axiom in the absolute theory of oriented parallelity , 1993 .

[24]  W. Pejas,et al.  Die Modelle des Hilbertschen Axiomensystems der absoluten Geometrie , 1961 .

[25]  L. J. Smid Eine absolute Axiomatik der Geometrie in einer begrenzten Ebene , 1936 .

[26]  D. Hilbert,et al.  Les fondements de la géométrie , 1971 .

[27]  Victor Pambuccian Sphere tangency as single primitive notion for hyperbolic and Euclidean geometry , 2003 .

[28]  José Ferreirós,et al.  The Road to Modern Logic—An Interpretation , 2001, Bulletin of Symbolic Logic.

[29]  Einleitung in die Allgemeine Kongruenzlehre , 1929 .

[30]  O. Bachmann Zur spiegelungsgeometrischen Begründung von Geometrien , 1976 .

[31]  Alexander Kreuzer Locally projective spaces which satisfy the Bundle Theorem , 1996 .

[32]  On J. Bolyai's parallel construction , 1979 .

[33]  Neue Begründung der ebenen Geometrie , 1907 .

[34]  Helmut Karzel Recent developments on absolute geometries and algebraization by K-loops , 1999, Discret. Math..

[35]  H. Karzel,et al.  Geschichte der Geometrie seit Hilbert , 1988 .

[36]  Independent axioms for Convexity , 1974 .

[37]  M. Dehn Die Legendre'schen Sätze über die Winkelsumme im Dreieck , 1900 .

[38]  von David Hilbert Über den Satz von der Gleichheit der Basiswinkel im gleich-schenkligen Dreieck , 1902 .

[39]  Friedrich Bachmann,et al.  Aufbau der Geometrie aus dem Spiegelungsbegriff , 1959 .

[40]  Marvin Jay Greenberg Aristotle's axiom in the foundations of geometry , 1988 .

[41]  J. Ahrens Begründung der absoluten Geometrie des Raumes aus dem Spiegelungsbegriff , 1959 .

[42]  Alfred Tarski,et al.  Tarski's System of Geometry , 1999, Bulletin of Symbolic Logic.

[43]  A. Tarski What is Elementary Geometry , 1959 .

[44]  W. Schwan,et al.  Grundlagen der Geometrie , 1931 .

[45]  Eine Begründung der hyperbolischen Geometrie , 1954 .

[46]  J. M. BocheŃski,et al.  The Axiomatic Method , 1965 .

[47]  J. Diller Eine algebraische Beschreibung der metrischen Ebenen mit ineinander beweglichen Geraden , 1970 .

[48]  K. Menger The New Foundation of Hyperbolic Geometry , 2002 .

[49]  P. Lockhart INTRODUCTION TO GEOMETRY , 2007 .

[50]  F. Bachmann Zur Parallelenfrage , 1964 .

[51]  Elementargeometrischer Beweis der Parallelenkonstruktion und neue Begründung der trigonometrischen Formeln der hyperbolischen Geometrie , 1905 .

[52]  R. Artzy Non-euclidean incidence planes , 1966 .

[53]  George David Birkhoff The collected mathematical papers , 1909 .

[54]  Projective-type axioms for the hyperbolic plane , 1992 .