Plasmonic extinction in gold nanoparticle-polymer films as film thickness and nanoparticle separation decrease below resonant wavelength

Abstract. Plasmonic nanoparticles embedded in polymer films enhance optoelectronic properties of photovoltaics, sensors, and interconnects. This work examined optical extinction of polymer films containing randomly dispersed gold nanoparticles (AuNP) with negligible Rayleigh scattering cross-sections at particle separations and film thicknesses less than (sub-) to greater than (super-) the localized surface plasmon resonant (LSPR) wavelength, λLSPR. Optical extinction followed opposite trends in sub- and superwavelength films on a per nanoparticle basis. In ∼70-nm-thick polyvinylpyrrolidone films containing 16 nm AuNP, measured resonant extinction per particle decreased as particle separation decreased from ∼130 to 76 nm, consistent with trends from Maxwell Garnett effective medium theory and coupled dipole approximation. In ∼1-mm-thick polydimethylsiloxane films containing 16-nm AuNP, resonant extinction per particle plateaued at particle separations ≥λLSPR, then increased as particle separation radius decreased from ∼514 to 408 nm. Contributions from isolated particles, interparticle interactions and heterogeneities in sub- and super-λLSPR films containing AuNP at sub-λLSPR separations were examined. Characterizing optoplasmonics of thin polymer films embedded with plasmonic NP supports rational development of optoelectronic, biomedical, and catalytic activity using these nanocomposites.

[1]  C. Nan,et al.  Effective thermal conductivity of particulate composites with interfacial thermal resistance , 1997 .

[2]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[3]  J. Springer,et al.  Improved three-dimensional optical model for thin-film silicon solar cells , 2004 .

[4]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[5]  J. Martínez‐Pastor,et al.  Optical properties of different polymer thin films containing in situ synthesized Ag and Au nanoparticles , 2009 .

[6]  Drew DeJarnette,et al.  Far-field Fano resonance in nanoring lattices modeled from extracted, point dipole polarizability , 2014 .

[7]  A. Bearzotti,et al.  A nanostructured composite based on polyaniline and gold nanoparticles: synthesis and gas sensing properties , 2013, Nanotechnology.

[8]  H. Rubahn,et al.  Mapping of gold nanostructure-enhanced near fields via laser scanning second-harmonic generation and ablation , 2012 .

[9]  Thomas Koch,et al.  Broadband and wide-angle hybrid antireflection coatings prepared by combining interference multilayers with subwavelength structures , 2016 .

[10]  B. Draine,et al.  Discrete-dipole approximation for periodic targets: theory and tests. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[11]  R. G. Freeman,et al.  Preparation and Characterization of Au Colloid Monolayers , 1995 .

[12]  Jeremy R. Dunklin,et al.  Gold nanoparticle-polydimethylsiloxane films reflect light internally by optical diffraction and Mie scattering , 2015 .

[13]  Drew DeJarnette,et al.  Spectral patterns underlying polarization-enhanced diffractive interference are distinguishable by complex trigonometry , 2012 .

[14]  Olivier J. F. Martin,et al.  Modeling near-field properties of plasmonic nanoparticles: a surface integral approach , 2009, NanoScience + Engineering.

[15]  Tian Yang,et al.  Dispersion and extinction of surface plasmons in an array of gold nanoparticle chains: influence of the air/glass interface. , 2008, Optics express.

[16]  Abbas Behjat,et al.  Development of a silver/polymer nanocomposite interconnection layer for organic tandem solar cells , 2015 .

[17]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[18]  Ping Zhang,et al.  Flexible integrated photonics: where materials, mechanics and optics meet [Invited] , 2013 .

[19]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[20]  Vladimir V Tsukruk,et al.  Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer. , 2014, ACS nano.

[21]  A. Russell,et al.  Gold nanoparticles reduced in situ and dispersed in polymer thin films: optical and thermal properties , 2012, Nanotechnology.

[22]  R. Blanchard,et al.  Thin-Film Interference in Lossy, Ultra-Thin Layers , 2014 .

[23]  M. Fox Optical Properties of Solids , 2010 .

[24]  George C. Schatz,et al.  Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy , 2009, Analytical and bioanalytical chemistry.

[25]  D. DeJarnette,et al.  Polarization angle affects energy of plasmonic features in Fano resonant regular lattices , 2014 .

[26]  R.G.W. Brown,et al.  Absorption and Scattering of Light by Small Particles , 1984 .

[27]  Vadakke Matham Murukeshan,et al.  Plasmonic nanopillar coupled two-dimensional random medium for broadband light trapping and harvesting , 2015 .

[28]  Gregory T. Forcherio,et al.  Diffraction in nanoparticle lattices increases sensitivity of localized surface plasmon resonance to refractive index changes , 2014 .

[29]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films. , 1904, Proceedings of the Royal Society of London.

[30]  Yi-Wen Chiu,et al.  Functional DNA biopolymers and nanocomposite for optoelectronic applications , 2012 .

[31]  A. Murphy,et al.  Heat generation by optically and thermally interacting aggregates of gold nanoparticles under illumination , 2009, Nanotechnology.

[32]  C. Guérin,et al.  Effective-medium theory for finite-size aggregates. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[33]  D. DeJarnette,et al.  Coupled dipole plasmonics of nanoantennas in discontinuous, complex dielectric environments , 2015 .

[34]  Drew DeJarnette,et al.  Polylogarithm-Based Computation of Fano Resonance in Arrayed Dipole Scatterers , 2014 .

[35]  W. Ahn,et al.  Enhanced Spectral Sensing by Electromagnetic Coupling With Localized Surface Plasmons on Subwavelength Structures , 2010, IEEE Sensors Journal.

[36]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[37]  Pedro J. Coelho,et al.  The role of ray effects and false scattering on the accuracy of the standard and modified discrete ordinates methods , 2002 .

[38]  B. Draine,et al.  Fast near field calculations in the discrete dipole approximation for regular rectilinear grids. , 2012, Optics express.

[39]  Yan Tang,et al.  Tunability of the refractive index of gold nanoparticle dispersions. , 2007, Nano letters.

[40]  J. A. Roux,et al.  Errata: Mie scattering by spheres in an absorbing medium , 1975 .

[41]  Martinos Ss Comment on "Experimental test of the Mie theory for microlithographically produced silver spheres" , 1989 .

[42]  D. K. Roper,et al.  Enhanced Nanoparticle Response From Coupled Dipole Excitation for Plasmon Sensors , 2011, IEEE Sensors Journal.

[43]  Muthukumaran Packirisamy,et al.  Integration of gold nanoparticles in PDMS microfluidics for lab-on-a-chip plasmonic biosensing of growth hormones. , 2013, Biosensors & bioelectronics.

[44]  O. Hunderi,et al.  Effective medium models for the optical properties of inhomogeneous materials. , 1981, Applied optics.

[45]  E. Purcell,et al.  Scattering and Absorption of Light by Nonspherical Dielectric Grains , 1973 .

[46]  Tarasankar Pal,et al.  Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. , 2007, Chemical reviews.

[47]  Noriah Bidin,et al.  In situ measurement of gold nanoparticle production , 2015 .

[48]  O. Levy,et al.  Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers , 1997 .

[49]  G. Sotiriou,et al.  Rapid synthesis of flexible conductive polymer nanocomposite films , 2015, Nanotechnology.

[50]  Natasha E. Hjerrild,et al.  Directional plasmonic scattering from metal nanoparticles in thin-film environments , 2014 .

[51]  M. Hoepfner,et al.  Microscale Heat Transfer Transduced by Surface Plasmon Resonant Gold Nanoparticles. , 2007, The journal of physical chemistry. C, Nanomaterials and interfaces.

[52]  M. J Post Wave Propagation and Scattering in Random Media: Ishimaru, Akira, Volume 1. Academic Press, New York, 1978, $22.50. , 1979 .

[53]  Yong-Young Noh,et al.  Downscaling of self-aligned, all-printed polymer thin-film transistors. , 2007, Nature nanotechnology.

[54]  Julia Lobera,et al.  Optical diffraction tomography in fluid velocimetry : the use of a priori information , 2008 .

[55]  Stéphane Berciaud,et al.  Observation of intrinsic size effects in the optical response of individual gold nanoparticles. , 2005, Nano letters.

[56]  Gregory T. Forcherio,et al.  Gold Nanoparticle–Polydimethylsiloxane Thin Films Enhance Thermoplasmonic Dissipation by Internal Reflection , 2014 .

[57]  Drew DeJarnette,et al.  Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays , 2012 .

[58]  S. Zhuang,et al.  FDTD modelling of silver nanoparticles embedded in phase separation interface of H-PDLC , 2015 .

[59]  G. Rance,et al.  Extinction coefficient analysis of small alkanethiolate-stabilised gold nanoparticles , 2008 .

[60]  Olaf Stenzel,et al.  Optical extinction by spherical particles in an absorbing medium: Application to composite absorbing films , 1999 .

[61]  David C. Look,et al.  Application of highly conductive ZnO to the excitation of long-range plasmons in symmetric hybrid waveguides , 2013 .

[62]  C. R. Martin,et al.  Dynamical Maxwell-Garnett optical modeling of nanogold-porous alumina composites : Mie and kappa influence on absorption maxima , 1997 .

[63]  D. Roper,et al.  Optical attenuation of plasmonic nanocomposites within photonic devices. , 2013, Applied optics.

[64]  Charles-Antoine Guérin,et al.  Maxwell-Garnett mixing rule in the presence of multiple scattering: Derivation and accuracy , 2005 .

[65]  Elvira Fortunato,et al.  Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids , 2015, Nanotechnology.

[66]  Wei E. I. Sha,et al.  Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers , 2011 .

[67]  Jeremy R. Dunklin,et al.  Asymmetric reduction of gold nanoparticles into thermoplasmonic polydimethylsiloxane thin films. , 2013, ACS applied materials & interfaces.

[68]  Xiaopeng Zhao,et al.  Diffraction pattern and optical activity of complex fluids under external electric field , 2004 .

[69]  C. Brosseau,et al.  Optical scattering and electric field enhancement from core–shell plasmonic nanostructures , 2011 .

[70]  D. DeJarnette,et al.  Nanoring structure, spacing, and local dielectric sensitivity for plasmonic resonances in Fano resonant square lattices. , 2014, Optics express.

[71]  Ramki Kalyanaraman,et al.  From Mie to Fresnel through effective medium approximation with multipole contributions , 2014 .

[72]  J. Martínez‐Pastor,et al.  Novel Method of Preparation of Gold‐Nanoparticle‐Doped TiO2 and SiO2 Plasmonic Thin Films: Optical Characterization and Comparison with Maxwell–Garnett Modeling , 2011 .