Using Combinatorial Benchmarks to Probe the Reasoning Power of Pseudo-Boolean Solvers
暂无分享,去创建一个
Jesús Giráldez-Cru | Marc Vinyals | Jakob Nordström | Jan Elffers | Jakob Nordström | Jesús Giráldez-Cru | Marc Vinyals | J. Elffers
[1] Vasco M. Manquinho,et al. On Using Cutting Planes in Pseudo-Boolean Optimization , 2006, J. Satisf. Boolean Model. Comput..
[2] Vasco M. Manquinho,et al. Generalized Totalizer Encoding for Pseudo-Boolean Constraints , 2015, CP.
[3] Vasco M. Manquinho,et al. Integration of lower bound estimates in pseudo-Boolean optimization , 2004, 16th IEEE International Conference on Tools with Artificial Intelligence.
[4] P. Barth. A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean optimization , 1995 .
[5] Jakob Nordström,et al. Divide and Conquer: Towards Faster Pseudo-Boolean Solving , 2018, IJCAI.
[6] Marijn J. H. Heule,et al. Trimming while checking clausal proofs , 2013, 2013 Formal Methods in Computer-Aided Design.
[7] Vasco M. Manquinho,et al. Pseudo-Boolean and Cardinality Constraints , 2021, Handbook of Satisfiability.
[8] Karem A. Sakallah,et al. Pueblo: A Hybrid Pseudo-Boolean SAT Solver , 2006, J. Satisf. Boolean Model. Comput..
[9] Ivor T. A. Spence. sgen1: A generator of small but difficult satisfiability benchmarks , 2010, JEAL.
[10] Vasco M. Manquinho,et al. Open-WBO: A Modular MaxSAT Solver, , 2014, SAT.
[11] Niklas Sörensson,et al. Translating Pseudo-Boolean Constraints into SAT , 2006, J. Satisf. Boolean Model. Comput..
[12] Klas Markström,et al. Locality and Hard SAT-Instances , 2006, J. Satisf. Boolean Model. Comput..
[13] Marc Vinyals,et al. CNFgen: A Generator of Crafted Benchmarks , 2017, SAT.
[14] Andreas Kuehlmann,et al. A fast pseudo-Boolean constraint solver , 2003, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
[15] Marijn J. H. Heule,et al. Verifying Refutations with Extended Resolution , 2013, CADE.
[16] Sharad Malik,et al. Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).
[17] Matthew L. Ginsberg,et al. Generalizing Boolean Satisfiability III: Implementation , 2011, J. Artif. Intell. Res..
[18] Robert E. Tarjan,et al. A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas , 1979, Inf. Process. Lett..
[19] Endre Boros,et al. Pseudo-Boolean optimization , 2002, Discret. Appl. Math..
[20] Roberto J. Bayardo,et al. Using CSP Look-Back Techniques to Solve Real-World SAT Instances , 1997, AAAI/IAAI.
[21] Joao Marques-Silva,et al. GRASP: A Search Algorithm for Propositional Satisfiability , 1999, IEEE Trans. Computers.
[22] Marijn J. H. Heule,et al. DRAT-trim: Efficient Checking and Trimming Using Expressive Clausal Proofs , 2014, SAT.
[23] Ivor T. A. Spence,et al. Zero-One Designs Produce Small Hard SAT Instances , 2010, SAT.
[24] Vasek Chvátal,et al. Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..
[25] Armin Haken,et al. The Intractability of Resolution , 1985, Theor. Comput. Sci..
[26] Ralph E. Gomory,et al. An algorithm for integer solutions to linear programs , 1958 .
[27] Jakob Nordström,et al. Long Proofs of (Seemingly) Simple Formulas , 2014, SAT.
[28] Jesús Giráldez-Cru,et al. In Between Resolution and Cutting Planes: A Study of Proof Systems for Pseudo-Boolean SAT Solving , 2018, SAT.
[29] Peter Barth. Linear 0-1 Inequalities and Extended Clauses , 1993, LPAR.
[30] William J. Cook,et al. On the complexity of cutting-plane proofs , 1987, Discret. Appl. Math..
[31] Daniel Le Berre,et al. The Sat4j library, release 2.2 , 2010, J. Satisf. Boolean Model. Comput..
[32] Eli Ben-Sasson,et al. Short proofs are narrow—resolution made simple , 2001, JACM.