A three-level speed sensor-less DTC drive of induction motor based on a full-order flux observer

Three-level neutral-point-clamped (NPC) inverters have been widely used in medium-voltage applications. In this paper, a three-level DTC (direct torque control) drive of an induction motor is presented. In order to keep the neutral-point-voltage balanced and simplify the complexity of vector selection, a virtual-vector method is applied. In addition, an adaptive full-order flux observer method is implemented and a high performance speed sensor-less DTC drive can be achieved. The validity of presented control strategies is verified by simulation and experimental results.

[1]  H. Kubota,et al.  DSP-based speed adaptive flux observer of induction motor , 1991, Conference Record of the 1991 IEEE Industry Applications Society Annual Meeting.

[2]  Li Yongdong,et al.  Direct torque control of induction motor for low speed drives considering discrete effects of control and dead-time of inverter , 1997, IAS '97. Conference Record of the 1997 IEEE Industry Applications Conference Thirty-Second IAS Annual Meeting.

[3]  Toshihiko Noguchi,et al.  A New Quick-Response and High-Efficiency Control Strategy of an Induction Motor , 1986, IEEE Transactions on Industry Applications.

[4]  Dong-Seok Hyun,et al.  A novel PWM scheme for a three-level voltage source inverter with GTO thyristors , 1994, Proceedings of 1994 IEEE Industry Applications Society Annual Meeting.

[5]  Yongdong Li,et al.  A direct torque control of induction motor based on three-level NPC inverter , 2001, 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No.01CH37230).

[6]  D. Borojevic,et al.  A comprehensive study of neutral-point voltage balancing problem in three-level neutral-point-clamped voltage source PWM inverters , 1999, APEC '99. Fourteenth Annual Applied Power Electronics Conference and Exposition. 1999 Conference Proceedings (Cat. No.99CH36285).