Regulation of oxygen affinity by quaternary enhancement: Does hemoglobin ypsilanti represent an allosteric intermediate?

Recent crystallographic studies on the mutant human hemoglobin Ypsilanti (β99 Asp→xsTyr) have revealed a previously unknownquaternary structure called “quaternary Y” and suggested that the new structure may represent an important intermediate in the cooperative oxygenationpathway of normal hemoglobin.15 Here we measure the oxygenation and subunit assembly properties of hemoglobin Ypsilanti and five additionalβ99 mutants (Asp β99→Val, Gly, Asn, Ala, His) totest for consistency between their energetics and those of the intermediatespecies of normal hemoglobin.

[1]  John C. Nash Nonlinear least squares , 2014, Introduction to Applied Linear Algebra.

[2]  M. Doyle,et al.  Mutagenic dissection of hemoglobin cooperativity: Effects of amino acidalteration on subunit assembly of oxy and deoxy tetramers , 1992, Proteins.

[3]  M. Doyle,et al.  Weighting functions and parameter resolvability for oxygenation data subject to error in the independent variable. , 1992, Biophysical chemistry.

[4]  M. Doyle,et al.  Molecular code for cooperativity in hemoglobin. , 1992, Science.

[5]  M. Doyle,et al.  Linkage between cooperative oxygenation and subunit assembly of cobaltous human hemoglobin. , 1991, Biochemistry.

[6]  G. K. Ackers,et al.  Experimental resolution of cooperative free energies for the ten ligation species of cobalt(II)/iron(II)-CO hemoglobin. , 1991, Biochemistry.

[7]  Y. Wada,et al.  Site-directed mutagenesis in haemoglobin: Functional role of tyrosine-42(C7)α at the α1-β2 interface☆ , 1991 .

[8]  M. A. Shea,et al.  Identification of the intermediate allosteric species in human hemoglobin reveals a molecular code for cooperative switching. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[9]  E. Lattman,et al.  The mutation β99 Asp‐Tyr stabilizes Y—A new, composite quaternary state of human hemoglobin , 1991, Proteins.

[10]  G. K. Ackers,et al.  Direct and indirect pathways of functional coupling in human hemoglobin are revealed by quantitative low-temperature isoelectric focusing of mutant hybrids. , 1990, Biochemistry.

[11]  G. K. Ackers The energetics of ligand-linked subunit assembly in hemoglobin require a third allosteric structure. , 1990, Biophysical chemistry.

[12]  G. K. Ackers,et al.  Analysis of hemoglobin oxygenation from combined equilibrium and kinetic data. Is quaternary enhancement necessary? , 1990, Biophysical chemistry.

[13]  C. Robert,et al.  Linkage of organic phosphates to oxygen binding in human hemoglobin at high concentrations. , 1988, Biochemistry.

[14]  E. Di Cera,et al.  On the determination of species fractions from ligand-binding data. Application to human hemoglobin. , 1988, Biophysical chemistry.

[15]  T. Kitagawa,et al.  Functional and structural analyses on abnormal hemoglobins with impaired oxygen binding properties—To elucidate the allosteric mechanism of hemoglobin , 1987 .

[16]  G. K. Ackers,et al.  Effects of protons on the oxygenation-linked subunit assembly in human hemoglobin , 1984 .

[17]  H. Wajcman,et al.  A new hemoglobin variant altering the α1β2 contact: Hb Chemilly α2β2 99(G1)Asp→Val , 1984 .

[18]  B. Shaanan,et al.  Structure of human oxyhaemoglobin at 2.1 A resolution. , 1983, Journal of molecular biology.

[19]  G. K. Ackers,et al.  Probing the energetics of proteins through structural perturbation: sites of regulatory energy in human hemoglobin. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[20]  J. Rosa,et al.  Functional studies of two new abnormal hemoglobins with their mutation located at intersubunit contacts: Hb hotel dieu β99 (G1) Asp → Gly and Hb pitie salpetriere β34 (B16) Val → Phe , 1981 .

[21]  G. K. Ackers,et al.  Mutual effects of protons, NaCl, and oxygen on the dimer-tetramer assembly of human hemoglobin. The dimer Bohr effect. , 1981, The Journal of biological chemistry.

[22]  G. K. Ackers,et al.  Thermodynamic studies on ligand binding and subunit association of human hemoglobins. Enthalpies of binding O2 and CO to subunit chains of hemoglobin A. , 1979, The Journal of biological chemistry.

[23]  G. K. Ackers,et al.  Thermodynamic studies on the oxygenation and subunit association of human hemoglobin. Temperature dependence of the linkage between dimer-tetramer association and oxygenation state. , 1979, The Journal of biological chemistry.

[24]  C Chothia,et al.  Haemoglobin: the structural changes related to ligand binding and its allosteric mechanism. , 1979, Journal of molecular biology.

[25]  S. Gill,et al.  Membrane-covered thin-layer optical cell for gas-reaction studies of hemoglobin. , 1978, Analytical biochemistry.

[26]  B. Hedlund,et al.  Thermodynamic aspects of the linkage between binding of chloride and oxygen to human hemoglobin. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[27]  R. Battino,et al.  Low-pressure solubility of gases in liquid water , 1977 .

[28]  M. Perutz,et al.  Haemoglobin Radcliffe (α2β299(G1)Ala): A High Oxygen‐Affinity Variant Causing Familial Polycythaemia , 1977 .

[29]  G. K. Ackers,et al.  Thermodynamic studies on subunit assembly in human hemoglobin. Temperature dependence of the dimer-tetramer association constants for oxygenated and unliganded hemoglobins. , 1977, The Journal of biological chemistry.

[30]  G. K. Ackers,et al.  Thermodynamic studies on subunit assembly in human hemoglobin. Self-association of oxygenated chains (alphaSH and betaSH): determination of stoichiometries and equilibrium constants as a function of temperature. , 1977, The Journal of biological chemistry.

[31]  G. K. Ackers,et al.  Oxygenation-linked subunit interactions in human hemoglobin: experimental studies on the concentration dependence of oxygenation curves. , 1976, Biochemistry.

[32]  H. Halvorson,et al.  Oxygenation-linked subunit interactions in human hemoglobin: analysis of linkage functions for constituent energy terms. , 1976, Biochemistry.

[33]  S. White Titration of the carboxyhemoglobin tetramer-dimer equilibrium by inositol hexaphosphate. , 1976, The Journal of biological chemistry.

[34]  Y. Yoneyama,et al.  The effects of inositol hexaphosphate on the allosteric properties of two beta-99-substituted abnormal hemoglobins, hemoglobin Yakima and hemoglobin Kempsey. , 1975, The Journal of biological chemistry.

[35]  Q. Gibson,et al.  Functional properties of hemoglobin Kempsey. , 1974, The Journal of biological chemistry.

[36]  H. Halvorson,et al.  The linkage between oxygenation and subunit dissociation in human hemoglobin. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[37]  A. Fersht,et al.  Influence of globin structure on the state of the heme. II. Allosteric transitions in methemoglobin. , 1974, Biochemistry.

[38]  R. Williams,et al.  A convenient chromatographic method for the preparation of human hemoglobin. , 1973, Analytical biochemistry.

[39]  V. E. Ayers,et al.  Determination of the reactive sulfhydryl groups in heme proteins with 4,4'-dipyridinedisulfide. , 1969, Analytical biochemistry.

[40]  J. Smith,et al.  Familial Erythrocytosis: A Description of Three Families, One With Hemoglobin Ypsilanti , 1968 .

[41]  G. Guidotti The rates of reaction of the sulfhydryl groups of human hemoglobin. , 1965, The Journal of biological chemistry.

[42]  J. Changeux,et al.  ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. , 1965, Journal of molecular biology.

[43]  A. Riggs The binding of N-ethylmaleimide by human hemoglobin and its effect upon the oxygen equilibrium. , 1961, The Journal of biological chemistry.

[44]  Michael L. Johnson,et al.  [16] Nonlinear least-squares analysis , 1985 .

[45]  G. K. Ackers,et al.  Effects of site-specific amino acid modification on protein interactions and biological function. , 1985, Annual review of biochemistry.

[46]  G. K. Ackers,et al.  Measurement and analysis of ligand-linked subunit dissociation equilibria in human hemoglobins. , 1981, Methods in enzymology.

[47]  G. K. Ackers,et al.  Study of protein subunit association equilibria by elution gel chromatography. , 1979, Methods in enzymology.

[48]  G. K. Ackers,et al.  Quaternary enhancement in binding of oxygen by human hemoglobin. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[49]  G. K. Ackers,et al.  Self-association of hemoglobin betaSH chains is linked to oxygenation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[50]  M. Perutz,et al.  Noncooperativity of the dimer in the reaction of hemoglobin with oxygen (human-dissociation-equilibrium-sulfhydryl-absorption-x-ray analysis). , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[51]  M. Perutz Stereochemistry of cooperative effects in haemoglobin. , 1970, Nature.

[52]  G. K. Ackers Analytical gel chromatography of proteins. , 1970, Advances in protein chemistry.