Theory of Non-Equilibrium Stationary States as a Theory of Resonances

Abstract.We study a small quantum system (e.g., a simplified model for an atom or molecule) interacting with two bosonic or fermionic reservoirs (say, photon or phonon fields). We show that the combined system has a family of stationary states parametrized by two numbers, T1 and T2 (‘reservoir temperatures’). If T1 ≠ T2, then these states are non-equilibrium stationary states (NESS). In the latter case we show that they have nonvanishing heat fluxes and positive entropy production and are dynamically asymptotically stable. The latter means that the evolution with an initial condition, normal with respect to any state where the reservoirs are in equilibria at temperatures T1 and T2, converges to the corresponding NESS. Our results are valid for the temperatures satisfying the bound min (T1,T2) > g2 + α, where g is the coupling constant and 0 < α < 1 is a power related to the infra-red behaviour of the coupling functions.

[1]  David Ruelle How Should One Define Entropy Production for Nonequilibrium Quantum Spin Systems , 2002 .

[2]  C. Pillet,et al.  Non-Equilibrium Steady States of Finite¶Quantum Systems Coupled to Thermal Reservoirs , 2002 .

[3]  I. Ojima,et al.  Entropy production and its positivity in nonlinear response theory of quantum dynamical systems , 1988 .

[4]  I. Ojima Entropy production and nonequilibrium stationarity in quantum dynamical systems , 1991 .

[5]  J. Fröhlich,et al.  Return to equilibrium , 2000 .

[6]  M. Muck,et al.  Instability of equilibrium states for coupled heat reservoirs at different temperatures , 2005, math-ph/0508005.

[7]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[8]  Jürg Fröhlich,et al.  Dissipative Transport: Thermal Contacts and Tunnelling Junctions , 2002 .

[9]  Israel Michael Sigal,et al.  Renormalization Group Analysis of Spectral Problems in Quantum Field Theory , 1998 .

[10]  Topics in quantum statistical mechanics and operator algebras , 2001, math-ph/0107009.

[11]  V. Jaksic,et al.  Spectral Theory of Pauli–Fierz Operators , 2001 .

[12]  R. Haag,et al.  Local quantum physics , 1992 .

[13]  O. Bratteli Operator Algebras And Quantum Statistical Mechanics , 1979 .

[14]  M. Reed,et al.  Methods of Modern Mathematical Physics. 2. Fourier Analysis, Self-adjointness , 1975 .

[15]  E. J. Woods,et al.  REPRESENTATIONS OF THE CANONICAL COMMUTATION RELATIONS DESCRIBING A NONRELATIVISTIC INFINITE FREE BOSE GAS , 1963 .

[16]  C. Pillet,et al.  On Entropy Production in Quantum Statistical Mechanics , 2001 .

[17]  C. Pillet,et al.  Mathematical Theory of Non-Equilibrium Quantum Statistical Mechanics , 2002 .

[18]  Herbert Spohn,et al.  Irreversible Thermodynamics for Quantum Systems Weakly Coupled to Thermal Reservoirs , 2007 .

[19]  Barry Simon,et al.  Methods of modern mathematical physics. III. Scattering theory , 1979 .

[20]  Positive Commutators in Non-Equilibrium Quantum Statistical Mechanics , 2001, math-ph/0410014.

[21]  Walid K. Abou Salem,et al.  Cyclic Thermodynamic Processes and Entropy Production , 2006 .

[22]  M. Merkli Stability of Equilibria with a Condensate , 2004, math-ph/0405007.

[23]  M. Merkli Level shift operators for open quantum systems , 2006, math-ph/0601013.

[24]  Tu Berlin,et al.  Quantum Electrodynamics of Confined Nonrelativistic Particles , 1998 .

[25]  J. Fröhlich,et al.  Another Return of “Return to Equilibrium” , 2004, math-ph/0410011.

[26]  Claude-Alain Pillet,et al.  Non-Equilibrium Steady States of the XY Chain , 2003 .

[27]  J. Fröhlich,et al.  Smooth Feshbach map and operator-theoretic renormalization group methods , 2003 .

[28]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[29]  Rudolf Haag,et al.  On the equilibrium states in quantum statistical mechanics , 1967 .

[30]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[31]  David Ruelle Entropy Production in Quantum Spin Systems , 2001 .

[32]  C. Pillet,et al.  On a model for quantum friction, II. Fermi's golden rule and dynamics at positive temperature , 1996 .

[33]  I. Ojima Entropy production and nonequilibrium stationarity in quantum dynamical systems. Physical meaning of van Hove limit , 1989 .

[34]  Vojkan Jaksic,et al.  Perturbation Theory of W*-Dynamics, Liouvilleans and KMS-States , 2003 .