Decoherence-Free Subspaces for Multiple-Qubit Errors: (II) Universal, Fault-Tolerant Quantum Computation

Decoherence-free subspaces (DFSs) shield quantum information from errors induced by the interaction with an uncontrollable environment. Here we study a model of correlated errors forming an Abelian subgroup (stabilizer) of the Pauli group (the group of tensor products of Pauli matrices). Unlike previous studies of DFSs, this type of errors does not involve any spatial symmetry assumptions on the system-environment interaction. We solve the problem of universal, fault-tolerant quantum computation on the associated class of DFSs.

[1]  Hoi-Kwong Lo,et al.  Introduction to Quantum Computation Information , 2002 .

[2]  Daniel A. Lidar,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[3]  Daniel A. Lidar,et al.  Decoherence-free subspaces for multiple-qubit errors. I. Characterization , 1999, quant-ph/9908064.

[4]  P. Knight,et al.  Quantum Computing Using Dissipation , 2000 .

[5]  Daniel A. Lidar,et al.  Universal fault-tolerant quantum computation on decoherence-free subspaces , 1999, Physical review letters.

[6]  R. Cleve An Introduction to Quantum Complexity Theory , 1999, quant-ph/9906111.

[7]  V. Roychowdhury,et al.  On universal and fault-tolerant quantum computing: a novel basis and a new constructive proof of universality for Shor's basis , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[8]  Lov K. Grover,et al.  Quantum computation , 1999, Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013).

[9]  N. P. Landsman Lecture notes on C*-algebras, Hilbert C*-modules, and quantum mechanics , 1998, math-ph/9807030.

[10]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[11]  Colin P. Williams,et al.  Explorations in quantum computing , 1997 .

[12]  Christof Zalka Threshold Estimate for Fault Tolerant Quantum Computing , 1997 .

[13]  Christof Zalka Threshold Estimate for Fault Tolerant Quantum Computation , 1996, quant-ph/9612028.

[14]  D. Longmore The principles of magnetic resonance. , 1989, British medical bulletin.

[15]  K. Lendi,et al.  Quantum Dynamical Semigroups and Applications , 1987 .

[16]  K. Kraus,et al.  States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .

[17]  M. E. Rose,et al.  Elementary Theory of Angular Momentum , 1957 .