Convex Optimization in Normed Spaces: Theory, Methods and Examples

Basic Functional Analysis.- Existence of Minimizers.- Convex Analysis and Subdifferential Calculus.- Examples.- Problem-solving Strategies.- Keynote Iterative Methods.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  J. Neumann On Rings of Operators. Reduction Theory , 1949 .

[3]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .

[4]  R. C. James,et al.  Reflexivity and the Supremum of Linear Functionals , 1957 .

[5]  W. Cheney,et al.  Proximity maps for convex sets , 1959 .

[6]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[7]  J. Moreau Fonctions convexes duales et points proximaux dans un espace hilbertien , 1962 .

[8]  A. Goldstein Convex programming in Hilbert space , 1964 .

[9]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[10]  Boris Polyak,et al.  Constrained minimization methods , 1966 .

[11]  Z. Opial Weak convergence of the sequence of successive approximations for nonexpansive mappings , 1967 .

[12]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 2017 .

[13]  M. Powell A method for nonlinear constraints in minimization problems , 1969 .

[14]  M. Hestenes Multiplier and gradient methods , 1969 .

[15]  B. Martinet,et al.  R'egularisation d''in'equations variationnelles par approximations successives , 1970 .

[16]  Michael G. Crandall,et al.  GENERATION OF SEMI-GROUPS OF NONLINEAR TRANSFORMATIONS ON GENERAL BANACH SPACES, , 1971 .

[17]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[18]  Yoshikazu Kobayashi Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups , 1975 .

[19]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[20]  R. Tyrrell Rockafellar,et al.  Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..

[21]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[22]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[23]  H. Brezis,et al.  Produits infinis de resolvantes , 1978 .

[24]  J. Baillon,et al.  Un exemple concernant le comportement asymptotique de la solution du problème dudt + ∂ϑ(μ) ∋ 0 , 1978 .

[25]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[26]  Jonathan M. Borwein,et al.  A NOTE ON "-SUBGRADIENTS AND MAXIMAL MONOTONICITY , 1982 .

[27]  J. M. Thomas,et al.  Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .

[28]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[29]  H. Attouch,et al.  Duality for the Sum of Convex Functions in General Banach Spaces , 1986 .

[30]  A. Auslender,et al.  Penalty-proximal methods in convex programming , 1987 .

[31]  Osman Güer On the convergence of the proximal point algorithm for convex minimization , 1991 .

[32]  P. Alart,et al.  Penalization in non-classical convex programming via variational convergence , 1991, Math. Program..

[33]  Michael C. Ferris,et al.  Finite termination of the proximal point algorithm , 1991, Math. Program..

[34]  Jonathan Eckstein,et al.  Nonlinear Proximal Point Algorithms Using Bregman Functions, with Applications to Convex Programming , 1993, Math. Oper. Res..

[35]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[36]  Marc Teboulle,et al.  Entropy-Like Proximal Methods in Convex Programming , 1994, Math. Oper. Res..

[37]  Jonathan Eckstein Some Saddle-function splitting methods for convex programming , 1994 .

[38]  Marc Teboulle,et al.  A proximal-based decomposition method for convex minimization problems , 1994, Math. Program..

[39]  Roberto Cominetti,et al.  Asymptotic analysis of the exponential penalty trajectory in linear programming , 1994, Math. Program..

[40]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[41]  A. Iusem,et al.  Full convergence of the steepest descent method with inexact line searches , 1995 .

[42]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[43]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[44]  Adrian S. Lewis,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[45]  F. Alvarez Absolute minimizer in convex programming by exponential penalty. , 2000 .

[46]  Benar Fux Svaiter,et al.  Forcing strong convergence of proximal point iterations in a Hilbert space , 2000, Math. Program..

[47]  Paul Tseng,et al.  A Modified Forward-backward Splitting Method for Maximal Monotone Mappings 1 , 1998 .

[48]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[49]  Roberto Cominetti,et al.  Primal and dual convergence of a proximal point exponential penalty method for linear programming , 2002, Math. Program..

[50]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[51]  Roberto Cominetti,et al.  Coupling General Penalty Schemes for Convex Programming with the Steepest Descent and the Proximal Point Algorithm , 2002, SIAM J. Optim..

[52]  G. Bachman,et al.  Fourier and Wavelet Analysis , 2002 .

[53]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[54]  Bingsheng He,et al.  A new inexact alternating directions method for monotone variational inequalities , 2002, Math. Program..

[55]  S. Semmes Topological Vector Spaces , 2003 .

[56]  Claudia A. Sagastizábal,et al.  An Infeasible Bundle Method for Nonsmooth Convex Constrained Optimization without a Penalty Function or a Filter , 2005, SIAM J. Optim..

[57]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[58]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[59]  Anders Vretblad,et al.  Fourier Analysis and Its Applications , 2005 .

[60]  D. Donoho,et al.  Sparse nonnegative solution of underdetermined linear equations by linear programming. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Marc Teboulle,et al.  Interior Gradient and Proximal Methods for Convex and Conic Optimization , 2006, SIAM J. Optim..

[62]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[63]  Lionel Vaux,et al.  The differential ? -calculus , 2007 .

[64]  Patrick Redont,et al.  A New Class of Alternating Proximal Minimization Algorithms with Costs-to-Move , 2007, SIAM J. Optim..

[65]  Paul Tseng,et al.  Exact Regularization of Convex Programs , 2007, SIAM J. Optim..

[66]  M. H. Xu Proximal Alternating Directions Method for Structured Variational Inequalities , 2007 .

[67]  J. Bolte,et al.  Alternating Proximal Algorithms for Weakly Coupled Minimization Problems. Applications to Dynamical Games and PDE’s , 2008 .

[68]  J. Peypouquet ASYMPTOTIC CONVERGENCE TO THE OPTIMAL VALUE OF DIAGONAL PROXIMAL ITERATIONS IN CONVEX MINIMIZATION , 2008 .

[69]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[70]  Juan Peypouquet,et al.  Asymptotic equivalence and Kobayashi-type estimates fornonautonomous monotone operators in Banach spaces , 2009 .

[71]  S. Sorin,et al.  Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time , 2009, 0905.1270.

[72]  H. Attouch,et al.  ALTERNATING PROXIMAL ALGORITHMS FOR CONSTRAINED VARIATIONAL INEQUALITIES. APPLICATION TO DOMAIN DECOMPOSITION FOR PDE’S , 2010 .

[73]  Convex Optimization in Signal Processing and Communications , 2010 .

[74]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[75]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[76]  Juan Peypouquet,et al.  Asymptotic almost-equivalence of Lipschitz evolution systems in Banach spaces☆ , 2010 .

[77]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[78]  Juan Peypouquet,et al.  A unified approach to the asymptotic almost-equivalence of evolution systems without Lipschitz conditions , 2011 .

[79]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[80]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[81]  Juan Peypouquet,et al.  Prox-Penalization and Splitting Methods for Constrained Variational Problems , 2011, SIAM J. Optim..

[82]  Exactness conditions for a convex differentiable exterior penalty for linear programming , 2011 .

[83]  Juan Peypouquet,et al.  Coupling Forward-Backward with Penalty Schemes and Parallel Splitting for Constrained Variational Inequalities , 2011, SIAM J. Optim..

[84]  Juan Peypouquet,et al.  Coupling the Gradient Method with a General Exterior Penalization Scheme for Convex Minimization , 2012, J. Optim. Theory Appl..

[85]  Juan Peypouquet,et al.  Lagrangian-Penalization Algorithm for Constrained Optimization and Variational Inequalities , 2012 .

[86]  Juan Peypouquet,et al.  Forward–Backward Penalty Scheme for Constrained Convex Minimization Without Inf-Compactness , 2013, J. Optim. Theory Appl..

[87]  Giorgio C. Buttazzo,et al.  Variational Analysis in Sobolev and BV Spaces - Applications to PDEs and Optimization, Second Edition , 2014, MPS-SIAM series on optimization.

[88]  Marc Teboulle,et al.  Rate of Convergence Analysis of Decomposition Methods Based on the Proximal Method of Multipliers for Convex Minimization , 2014, SIAM J. Optim..

[89]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[90]  Leon Hirsch,et al.  Fundamentals Of Convex Analysis , 2016 .

[91]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .