Convex Optimization in Normed Spaces: Theory, Methods and Examples
暂无分享,去创建一个
[1] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[2] J. Neumann. On Rings of Operators. Reduction Theory , 1949 .
[3] H. H. Rachford,et al. On the numerical solution of heat conduction problems in two and three space variables , 1956 .
[4] R. C. James,et al. Reflexivity and the Supremum of Linear Functionals , 1957 .
[5] W. Cheney,et al. Proximity maps for convex sets , 1959 .
[6] J. Schwartz,et al. Linear Operators. Part I: General Theory. , 1960 .
[7] J. Moreau. Fonctions convexes duales et points proximaux dans un espace hilbertien , 1962 .
[8] A. Goldstein. Convex programming in Hilbert space , 1964 .
[9] J. Moreau. Proximité et dualité dans un espace hilbertien , 1965 .
[10] Boris Polyak,et al. Constrained minimization methods , 1966 .
[11] Z. Opial. Weak convergence of the sequence of successive approximations for nonexpansive mappings , 1967 .
[12] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 2017 .
[13] M. Powell. A method for nonlinear constraints in minimization problems , 1969 .
[14] M. Hestenes. Multiplier and gradient methods , 1969 .
[15] B. Martinet,et al. R'egularisation d''in'equations variationnelles par approximations successives , 1970 .
[16] Michael G. Crandall,et al. GENERATION OF SEMI-GROUPS OF NONLINEAR TRANSFORMATIONS ON GENERAL BANACH SPACES, , 1971 .
[17] H. Brezis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .
[18] Yoshikazu Kobayashi. Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups , 1975 .
[19] R. Rockafellar. Monotone Operators and the Proximal Point Algorithm , 1976 .
[20] R. Tyrrell Rockafellar,et al. Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..
[21] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[22] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[23] H. Brezis,et al. Produits infinis de resolvantes , 1978 .
[24] J. Baillon,et al. Un exemple concernant le comportement asymptotique de la solution du problème dudt + ∂ϑ(μ) ∋ 0 , 1978 .
[25] D. Kinderlehrer,et al. An introduction to variational inequalities and their applications , 1980 .
[26] Jonathan M. Borwein,et al. A NOTE ON "-SUBGRADIENTS AND MAXIMAL MONOTONICITY , 1982 .
[27] J. M. Thomas,et al. Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .
[28] Y. Nesterov. A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .
[29] H. Attouch,et al. Duality for the Sum of Convex Functions in General Banach Spaces , 1986 .
[30] A. Auslender,et al. Penalty-proximal methods in convex programming , 1987 .
[31] Osman Güer. On the convergence of the proximal point algorithm for convex minimization , 1991 .
[32] P. Alart,et al. Penalization in non-classical convex programming via variational convergence , 1991, Math. Program..
[33] Michael C. Ferris,et al. Finite termination of the proximal point algorithm , 1991, Math. Program..
[34] Jonathan Eckstein,et al. Nonlinear Proximal Point Algorithms Using Bregman Functions, with Applications to Convex Programming , 1993, Math. Oper. Res..
[35] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[36] Marc Teboulle,et al. Entropy-Like Proximal Methods in Convex Programming , 1994, Math. Oper. Res..
[37] Jonathan Eckstein. Some Saddle-function splitting methods for convex programming , 1994 .
[38] Marc Teboulle,et al. A proximal-based decomposition method for convex minimization problems , 1994, Math. Program..
[39] Roberto Cominetti,et al. Asymptotic analysis of the exponential penalty trajectory in linear programming , 1994, Math. Program..
[40] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[41] A. Iusem,et al. Full convergence of the steepest descent method with inexact line searches , 1995 .
[42] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[43] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[44] Adrian S. Lewis,et al. Convex Analysis And Nonlinear Optimization , 2000 .
[45] F. Alvarez. Absolute minimizer in convex programming by exponential penalty. , 2000 .
[46] Benar Fux Svaiter,et al. Forcing strong convergence of proximal point iterations in a Hilbert space , 2000, Math. Program..
[47] Paul Tseng,et al. A Modified Forward-backward Splitting Method for Maximal Monotone Mappings 1 , 1998 .
[48] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[49] Roberto Cominetti,et al. Primal and dual convergence of a proximal point exponential penalty method for linear programming , 2002, Math. Program..
[50] C. Zălinescu. Convex analysis in general vector spaces , 2002 .
[51] Roberto Cominetti,et al. Coupling General Penalty Schemes for Convex Programming with the Steepest Descent and the Proximal Point Algorithm , 2002, SIAM J. Optim..
[52] G. Bachman,et al. Fourier and Wavelet Analysis , 2002 .
[53] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[54] Bingsheng He,et al. A new inexact alternating directions method for monotone variational inequalities , 2002, Math. Program..
[55] S. Semmes. Topological Vector Spaces , 2003 .
[56] Claudia A. Sagastizábal,et al. An Infeasible Bundle Method for Nonsmooth Convex Constrained Optimization without a Penalty Function or a Filter , 2005, SIAM J. Optim..
[57] Patrick L. Combettes,et al. Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..
[58] E. Candès,et al. Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.
[59] Anders Vretblad,et al. Fourier Analysis and Its Applications , 2005 .
[60] D. Donoho,et al. Sparse nonnegative solution of underdetermined linear equations by linear programming. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[61] Marc Teboulle,et al. Interior Gradient and Proximal Methods for Convex and Conic Optimization , 2006, SIAM J. Optim..
[62] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[63] Lionel Vaux,et al. The differential ? -calculus , 2007 .
[64] Patrick Redont,et al. A New Class of Alternating Proximal Minimization Algorithms with Costs-to-Move , 2007, SIAM J. Optim..
[65] Paul Tseng,et al. Exact Regularization of Convex Programs , 2007, SIAM J. Optim..
[66] M. H. Xu. Proximal Alternating Directions Method for Structured Variational Inequalities , 2007 .
[67] J. Bolte,et al. Alternating Proximal Algorithms for Weakly Coupled Minimization Problems. Applications to Dynamical Games and PDE’s , 2008 .
[68] J. Peypouquet. ASYMPTOTIC CONVERGENCE TO THE OPTIMAL VALUE OF DIAGONAL PROXIMAL ITERATIONS IN CONVEX MINIMIZATION , 2008 .
[69] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[70] Juan Peypouquet,et al. Asymptotic equivalence and Kobayashi-type estimates fornonautonomous monotone operators in Banach spaces , 2009 .
[71] S. Sorin,et al. Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time , 2009, 0905.1270.
[72] H. Attouch,et al. ALTERNATING PROXIMAL ALGORITHMS FOR CONSTRAINED VARIATIONAL INEQUALITIES. APPLICATION TO DOMAIN DECOMPOSITION FOR PDE’S , 2010 .
[73] Convex Optimization in Signal Processing and Communications , 2010 .
[74] Antonin Chambolle,et al. A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.
[75] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .
[76] Juan Peypouquet,et al. Asymptotic almost-equivalence of Lipschitz evolution systems in Banach spaces☆ , 2010 .
[77] Junfeng Yang,et al. Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..
[78] Juan Peypouquet,et al. A unified approach to the asymptotic almost-equivalence of evolution systems without Lipschitz conditions , 2011 .
[79] Heinz H. Bauschke,et al. Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.
[80] Stephen P. Boyd,et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..
[81] Juan Peypouquet,et al. Prox-Penalization and Splitting Methods for Constrained Variational Problems , 2011, SIAM J. Optim..
[82] Exactness conditions for a convex differentiable exterior penalty for linear programming , 2011 .
[83] Juan Peypouquet,et al. Coupling Forward-Backward with Penalty Schemes and Parallel Splitting for Constrained Variational Inequalities , 2011, SIAM J. Optim..
[84] Juan Peypouquet,et al. Coupling the Gradient Method with a General Exterior Penalization Scheme for Convex Minimization , 2012, J. Optim. Theory Appl..
[85] Juan Peypouquet,et al. Lagrangian-Penalization Algorithm for Constrained Optimization and Variational Inequalities , 2012 .
[86] Juan Peypouquet,et al. Forward–Backward Penalty Scheme for Constrained Convex Minimization Without Inf-Compactness , 2013, J. Optim. Theory Appl..
[87] Giorgio C. Buttazzo,et al. Variational Analysis in Sobolev and BV Spaces - Applications to PDEs and Optimization, Second Edition , 2014, MPS-SIAM series on optimization.
[88] Marc Teboulle,et al. Rate of Convergence Analysis of Decomposition Methods Based on the Proximal Method of Multipliers for Convex Minimization , 2014, SIAM J. Optim..
[89] S. Frick,et al. Compressed Sensing , 2014, Computer Vision, A Reference Guide.
[90] Leon Hirsch,et al. Fundamentals Of Convex Analysis , 2016 .
[91] Hyunjoong Kim,et al. Functional Analysis I , 2017 .