Supercontinuum generation in silicon nanowire embedded photonic crystal fibers with different core geometries

We design various silicon nanowire embedded photonic crystal fibers (SN-PCFs) with different core geometries, namely, circular, rectangular and elliptical using finite element method. Further, we study the optical properties such as group velocity dispersion (GVD), third order dispersion (TOD) of x and y-polarized modes and effective nonlinearity for a wavelength range from 0.8 to 1.6 μm. The proposed structure exhibits almost flat GVD (0.8 to 1.2 μm wavelength), zero GVD (≈ 1.31 μm) and small TOD (0.00069 ps3/m) at 1.1 μm wavelength and high nonlinearity (2916 W-1m-1) at 0.8 μm wavelength for a 300 nm core diameter of circular core SN-PCF. Besides, we have been able to demonstrate the supercontinuum for the different core geometries at 1.3 μm wavelength with a less input power of 25 W for the input pulse of 20 fs. The numerical simulation results reveal that the proposed circular core SN-PCF could generate the supercontinuum of wider bandwidth (900 nm) compared to that from rest of the geometries. This enhanced bandwidth turns out to be a boon for optical coherence tomography (OCT) system.

[1]  A. Husakou,et al.  Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. , 2001, Physical review letters.

[2]  Xiaoping Liu,et al.  Large longitudinal electric fields (Ez) in silicon nanowire waveguides. , 2009, Optics express.

[3]  Toshio Morioka,et al.  1 Tbit/s (100 Gbit/s × 10 channel) OTDM/WDM transmission using a single supercontinuum WDM source , 1996 .

[4]  Qiang Lin,et al.  Soliton fission and supercontinuum generation in silicon waveguides. , 2007, Optics letters.

[5]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[6]  Scott T. Sanders,et al.  Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy , 2002 .

[7]  W. Drexler Ultrahigh-resolution optical coherence tomography. , 2004, Journal of biomedical optics.

[8]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[9]  James G. Fujimoto,et al.  Ultrahigh resolution optical coherence tomography , 2002 .

[10]  Bahram Jalali,et al.  All optical switching and continuum generation in silicon waveguides. , 2004, Optics express.

[11]  W. Marsden I and J , 2012 .

[12]  Tanya M Monro,et al.  A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity. , 2009, Optics express.

[13]  Haohua Tu,et al.  Broadband nonlinear vibrational spectroscopy by shaping a coherent fiber supercontinuum. , 2013, Optics express.

[14]  T. Kuri,et al.  Wavelength-division-multiplexed Millimeter-waveband radio-on-fiber system using a supercontinuum light source , 2006, Journal of Lightwave Technology.

[15]  A. Kudlinski,et al.  Dispersion-Engineered Photonic Crystal Fibers for CW-Pumped Supercontinuum Sources , 2009, Journal of Lightwave Technology.

[16]  K. Nakkeeran,et al.  Waveguiding properties of a silicon nanowire embedded photonic crystal fiber , 2014 .

[17]  Ole Bang,et al.  Supercontinuum generation in photonic crystal fibres , 2007 .

[18]  Takenobu Suzuki,et al.  A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation. , 2009, Optics express.

[19]  G. Agrawal Chapter 11 – Highly Nonlinear Fibers , 2006 .

[20]  J. Fujimoto,et al.  Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. , 2001, Optics letters.

[21]  Clemens F. Kaminski,et al.  Supercontinuum radiation for applications in chemical sensing and microscopy , 2008 .

[22]  Rick Trebino,et al.  Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires. , 2005, Optics express.

[23]  Robert R. Alfano,et al.  Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers , 1987 .

[24]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .