Statistical properties of superflares on solar-type stars based on 1-min cadence data

We searched for superflares on solar-type stars using Kepler data with 1-min sampling in order to detect superflares with a short duration. We found 187 superflares on 23 solar-type stars whose bolometric energy ranges from the order of 1032 to 1036 erg. Some superflares show multiple peaks with the peak separation of the order of 100 to 1,000 s which is comparable to the periods of quasi-periodic pulsations in solar and stellar flares. Using these new data combined with the results from the data with 30-min sampling, we found that the occurrence frequency (dN/dE) of superflares as a function of flare energy (E) shows the power-law distribution (dN/dE∝E−α) with α∼−1.5 for 1033<E<1036 erg which is consistent with the previous results. The average occurrence rate of superflares with the energy of 1033 erg which is equivalent to X100 solar flares is about once in 500 to 600 years. The upper limit of energy released by superflares is basically comparable to a fraction of the magnetic energy stored near starspots which is estimated from the photometry.We also found that the duration of superflares (τ) increases with the flare energy (E) as τ∝E0.39 ± 0.03. This can be explained if we assume the time scale of flares is determined by the Alfvén time.

[1]  Jaymie M. Matthews,et al.  REVISED STELLAR PROPERTIES OF KEPLER TARGETS FOR THE QUARTER 1–16 TRANSIT DETECTION RUN , 2013, 1312.0662.

[2]  D. Soderblom,et al.  Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records , 2012, 1206.4889.

[3]  B. Schaefer,et al.  Superflares on Ordinary Solar-Type Stars , 1999, astro-ph/9909188.

[4]  L. Piro,et al.  EXOSAT detection of an X-ray flare from the solar type star π1 UMa , 1986 .

[5]  Harry P. Warren,et al.  Time Variability of the “Quiet” Sun Observed with TRACE. II. Physical Parameters, Temperature Evolution, and Energetics of Extreme-Ultraviolet Nanoflares , 2000 .

[6]  A. Pevtsov,et al.  The Relationship Between X-Ray Radiance and Magnetic Flux , 2003 .

[7]  H. Maehara,et al.  High-Dispersion Spectroscopy of the Superflare Star KIC 6934317 , 2013, 1307.4929.

[8]  H. Maehara,et al.  SUPERFLARE OCCURRENCE AND ENERGIES ON G-, K-, AND M-TYPE DWARFS , 2014, 1405.1453.

[9]  A. Inglis Quasi-periodic pulsations in solar flares , 2009 .

[10]  N. Gopalswamy,et al.  Geoeffectiveness of halo coronal mass ejections , 2007 .

[11]  Sara Seager,et al.  KEPLER ECLIPSING BINARY STARS. I. CATALOG AND PRINCIPAL CHARACTERIZATION OF 1879 ECLIPSING BINARIES IN THE FIRST DATA RELEASE , 2010, 1006.2815.

[12]  Takashi Nagao,et al.  Can Superflares Occur on Our Sun , 2012, 1212.1361.

[13]  M. Aschwanden,et al.  GLOBAL ENERGETICS OF SOLAR FLARES. II. THERMAL ENERGIES , 2015, 1502.05941.

[14]  A. Benz,et al.  Flare Observations , 2016, Living Reviews in Solar Physics.

[15]  A. Kowalski,et al.  THE DECAYING LONG-PERIOD OSCILLATION OF A STELLAR MEGAFLARE , 2013 .

[16]  J. G. Doyle,et al.  GALEX high time-resolution ultraviolet observations of dMe flare events , 2006, astro-ph/0608254.

[17]  Martin C. Stumpe,et al.  Kepler Presearch Data Conditioning II - A Bayesian Approach to Systematic Error Correction , 2012, 1203.1383.

[18]  Takashi Nagao,et al.  Superflares on solar-type stars , 2012, Nature.

[19]  Toshifumi Shimizu,et al.  Energetics and Occurrence Rate of Active-Region Transient Brightenings and Implications for the Heating of the Active-Region Corona , 1995 .

[20]  M. Mayor,et al.  Multiplicity among solar-type stars in the solar neighbourhood. II - Distribution of the orbital elements in an unbiased sample. , 1991 .

[21]  T. Ayres Evolution of the solar ionizing flux , 1997 .

[22]  Timothy M. Brown,et al.  KEPLER INPUT CATALOG: PHOTOMETRIC CALIBRATION AND STELLAR CLASSIFICATION , 2011, 1102.0342.

[23]  H. Maehara,et al.  High dispersion spectroscopy of solar-type superflare stars. I. Temperature, surface gravity, metallicity, and vsin i , 2014, 1412.8243.

[24]  Jeffery J. Kolodziejczak,et al.  Kepler Presearch Data Conditioning I—Architecture and Algorithms for Error Correction in Kepler Light Curves , 2012, 1203.1382.

[25]  J. P. Osborne,et al.  1SXPS: A DEEP SWIFT X-RAY TELESCOPE POINT SOURCE CATALOG WITH LIGHT CURVES AND SPECTRA , 2013, 1311.5368.

[26]  C. Ginski,et al.  Superflares on the slowly rotating solar-type stars KIC10524994 and KIC07133671? , 2014, 1408.2688.

[27]  R. C. Carrington Description of a Singular Appearance seen in the Sun on September 1, 1859 , 1859 .

[28]  Brian R. Dennis,et al.  Frequency distributions and correlations of solar X-ray flare parameters , 1993 .

[29]  M. Aschwanden,et al.  GLOBAL ENERGETICS OF SOLAR FLARES. I. MAGNETIC ENERGIES , 2014, 1410.8013.

[30]  V. Nakariakov,et al.  Quasi-Periodic Pulsations in Solar Flares , 2009 .

[31]  William F. Welsh,et al.  KEPLER ECLIPSING BINARY STARS. II. 2165 ECLIPSING BINARIES IN THE SECOND DATA RELEASE , 2011, 1103.1659.

[32]  Kazunari Shibata,et al.  Two sun-like superflare stars rotating as slow as the Sun , 2014, 1402.3772.

[33]  Svetlana V. Berdyugina,et al.  Starspots: A Key to the Stellar Dynamo , 2005 .

[34]  Carolus J. Schrijver,et al.  Coronal Loop Oscillations Observed with the Transition Region and Coronal Explorer , 1999 .

[35]  Greg Kopp,et al.  The Total Irradiance Monitor (TIM): Science Results , 2005 .

[36]  K. Masuda,et al.  Correction: Corrigendum: Another rapid event in the carbon-14 content of tree rings , 2013, Nature Communications.

[37]  W. Otruba,et al.  Temporal aspects and frequency distributions of solar soft X-ray flares , 2002, astro-ph/0207234.

[38]  Kepler super-flare stars: what are they? , 2014, 1406.0612.

[39]  Patricia H. Reiff,et al.  Effects of the March 1989 solar activity , 1989 .

[40]  M. R. Haas,et al.  Kepler Mission Design, Realized Photometric Performance, and Early Science , 2010, 1001.0268.

[41]  Steven Christe,et al.  RHESSI Microflare Statistics. I. Flare-Finding and Frequency Distributions , 2008 .

[42]  K. Shibata,et al.  Solar Flares: Magnetohydrodynamic Processes , 2011 .

[43]  Bruce T. Tsurutani,et al.  The extreme magnetic storm of 1–2 September 1859 , 2003 .

[44]  The first observed stellar X-ray flare oscillation: Constraints on the flare loop length and the magnetic field , 2005, astro-ph/0503384.

[45]  W. Ip,et al.  A STUDY OF VARIABILITY IN THE FREQUENCY DISTRIBUTIONS OF THE SUPERFLARES OF G-TYPE STARS OBSERVED BY THE KEPLER MISSION , 2014 .

[46]  H. Maehara,et al.  High Dispersion Spectroscopy of Solar-type Superflare Stars. II. Stellar Rotation, Starspots, and Chromospheric Activities , 2014, 1412.8245.

[47]  Toshio Nakamura,et al.  A signature of cosmic-ray increase in ad 774–775 from tree rings in Japan , 2012, Nature.

[48]  D. A. Caldwell,et al.  INITIAL CHARACTERISTICS OF KEPLER SHORT CADENCE DATA , 2009, 1001.0142.

[49]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[50]  Bradley E. Schaefer,et al.  Flashes from normal stars , 1989 .

[51]  H. Maehara,et al.  SUPERFLARES ON SOLAR-TYPE STARS OBSERVED WITH KEPLER. I. STATISTICAL PROPERTIES OF SUPERFLARES , 2013, 1308.1480.

[52]  B. R. Dennis,et al.  GLOBAL ENERGETICS OF THIRTY-EIGHT LARGE SOLAR ERUPTIVE EVENTS , 2012, 1209.2654.

[53]  Harold Zirin,et al.  The Dependence of Large Flare Occurrence on the Magnetic Structure of Sunspots , 2000 .

[54]  H. Maehara,et al.  SUPERFLARES ON SOLAR-TYPE STARS OBSERVED WITH KEPLER II. PHOTOMETRIC VARIABILITY OF SUPERFLARE-GENERATING STARS: A SIGNATURE OF STELLAR ROTATION AND STARSPOTS , 2013, 1304.7361.