Significant and sustained antitumor activity in post-docetaxel, castration-resistant prostate cancer with the CYP17 inhibitor abiraterone acetate.

PURPOSE The principal objective of this trial was to evaluate the antitumor activity of abiraterone acetate, an oral, specific, irreversible inhibitor of CYP17 in docetaxel-treated patients with castration-resistant prostate cancer (CRPC). PATIENTS AND METHODS In this multicenter, two-stage, phase II study, abiraterone acetate 1,000 mg was administered once daily continuously. The primary end point was achievement of a prostate-specific antigen (PSA) decline of > or = 50% in at least seven of 35 patients. Per an attained phase II design, more than 35 patients could be enrolled if the primary end point was met. Secondary objectives included: PSA declines of > or = 30% and > or = 90%; rate of RECIST (Response Evaluation Criteria in Solid Tumors) responses and duration on study; time to PSA progression; safety and tolerability; and circulating tumor cell (CTC) enumeration. RESULTS Docetaxel-treated patients with CRPC (N = 47) were enrolled. PSA declines of > or = 30%, > or = 50% and > or = 90% were seen in 68% (32 of 47), 51% (24 of 47), and 15% (seven of 47) of patients, respectively. Partial responses (by RECIST) were reported in eight (27%) of 30 patients with measurable disease. Median time to PSA progression was 169 days (95% CI, 113 to 281 days). The median number of weeks on study was 24, and 12 (25.5%) of 47 patients remained on study > or = 48 weeks. CTCs were enumerated in 34 patients; 27 (79%) of 34 patients had at least five CTCs at baseline. Eleven (41%) of 27 patients had a decline from at least five to less than 5 CTCs, and 18 (67%) of 27 had a > or = 30% decline in CTCs after starting treatment with abiraterone acetate. Abiraterone acetate was well tolerated. CONCLUSION Abiraterone acetate has significant antitumor activity in post-docetaxel patients with CRPC. Randomized, phase III trials of abiraterone acetate are underway to define the future role of this agent.

[1]  P. Kantoff,et al.  Phase I clinical trial of the CYP17 inhibitor abiraterone acetate demonstrating clinical activity in patients with castration-resistant prostate cancer who received prior ketoconazole therapy. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[2]  S. Larson,et al.  Phase II multicenter study of abiraterone acetate plus prednisone therapy in patients with docetaxel-treated castration-resistant prostate cancer. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[3]  M. Dowsett,et al.  Selective inhibition of CYP17 with abiraterone acetate is highly active in the treatment of castration-resistant prostate cancer. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[4]  L. Terstappen,et al.  Characterization of circulating tumor cells by fluorescence in situ hybridization , 2009, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[5]  D. Dearnaley,et al.  Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. , 2009, Cancer research.

[6]  Xiaoyu Jia,et al.  Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial data. , 2009, The Lancet. Oncology.

[7]  M. Dowsett,et al.  Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[8]  K. Pienta,et al.  Circulating Tumor Cells Predict Survival Benefit from Treatment in Metastatic Castration-Resistant Prostate Cancer , 2008, Clinical Cancer Research.

[9]  T. Golub,et al.  Estrogen-dependent signaling in a molecularly distinct subclass of aggressive prostate cancer. , 2008, Journal of the National Cancer Institute.

[10]  P. Nelson,et al.  Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. , 2008, Cancer research.

[11]  Susan Halabi,et al.  Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[12]  J. Ferlay,et al.  Estimates of the cancer incidence and mortality in Europe in 2006. , 2006, Annals of oncology : official journal of the European Society for Medical Oncology.

[13]  C. Parker,et al.  Improving the outcome of patients with castration-resistant prostate cancer through rational drug development , 2006, British Journal of Cancer.

[14]  R. Bernhardt,et al.  CYP17- and CYP11B-dependent steroid hydroxylases as drug development targets. , 2006, Pharmacology & therapeutics.

[15]  T. Golub,et al.  Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. , 2006, Cancer research.

[16]  P. Lønning,et al.  Aromatase Inhibition: Translation into a Successful Therapeutic Approach , 2005, Clinical Cancer Research.

[17]  Jonathan W. Uhr,et al.  Tumor Cells Circulate in the Peripheral Blood of All Major Carcinomas but not in Healthy Subjects or Patients With Nonmalignant Diseases , 2004, Clinical Cancer Research.

[18]  I. Tannock,et al.  Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. , 2004, New England Journal of Medicine.

[19]  Desok Kim,et al.  The Androgen Axis in Recurrent Prostate Cancer , 2004, Clinical Cancer Research.

[20]  Kevin Regan,et al.  Nomogram for overall survival of patients with progressive metastatic prostate cancer after castration. , 2002, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[21]  B. Freidlin,et al.  Eligibility and response guidelines for phase II clinical trials in androgen-independent prostate cancer: recommendations from the Prostate-Specific Antigen Working Group. , 1999, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[22]  B. Haynes,et al.  3- and 4-Pyridylalkyl Adamantanecarboxylates: Inhibitors of Human Cytochrome P45017α (17α-Hydroxylase/C17,20-Lyase). Potential Nonsteroidal Agents for the Treatment of Prostatic Cancer , 1996 .

[23]  B. Haynes,et al.  Pharmacology of novel steroidal inhibitors of cytochrome P45017α (17α-hydroxylase/C17–20 lyase) , 1994, The Journal of Steroid Biochemistry and Molecular Biology.

[24]  D. Dearnaley,et al.  Circulating tumour cell (CTC) counts as intermediate end points in castration-resistant prostate cancer (CRPC): a single-centre experience. , 2009, Annals of oncology : official journal of the European Society for Medical Oncology.

[25]  E. Latulippe,et al.  Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. , 2004, The American journal of pathology.

[26]  S. Green,et al.  Planned versus attained design in phase II clinical trials. , 1992, Statistics in medicine.