Numerical simulation of Camassa-Holm peakons by adaptive upwinding

The Camassa-Holm equation is a conservation law with a non-local flux that models shallow water waves and features soliton solutions with a corner at their crests, so-called peakons. In the present paper a finite-volume method is developed to simulate the dynamics of peakons. This conservative scheme is adaptive, high resolution and stable without any explicit introduction of artificial viscosity. A numerical simulation indicates that a certain plateau shaped travelling wave solution breaks up in time.

[1]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[2]  Robert Artebrant,et al.  Limiter-Free Third Order Logarithmic Reconstruction , 2006, SIAM J. Sci. Comput..

[3]  H. Joachim Schroll Relaxed High Resolution Schemes for Hyperbolic Conservation Laws , 2004, J. Sci. Comput..

[4]  J. Escher,et al.  GLOBAL WEAK SOLUTIONS FOR A SHALLOW WATER EQUATION , 1998 .

[5]  Eleuterio F. Toro,et al.  ADER: Arbitrary High Order Godunov Approach , 2002, J. Sci. Comput..

[6]  J. Escher,et al.  On the blow-up rate and the blow-up set of breaking waves for a shallow water equation , 2000 .

[7]  W. Strauss,et al.  Stability of peakons , 2000 .

[8]  R. Danchin A note on well-posedness for Camassa-Holm equation , 2003 .

[9]  A. Constantin,et al.  Global Weak Solutions for a Shallow Water Equation , 2000 .

[10]  Yong-Tao Zhang,et al.  Resolution of high order WENO schemes for complicated flow structures , 2003 .

[11]  E. Tadmor,et al.  Hyperbolic Problems: Theory, Numerics, Applications , 2003 .

[12]  Antonio Marquina,et al.  Local Piecewise Hyperbolic Reconstruction of Numerical Fluxes for Nonlinear Scalar Conservation Laws , 1994, SIAM J. Sci. Comput..

[13]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[14]  Jianxian Qiu,et al.  On the construction, comparison, and local characteristic decomposition for high-Order central WENO schemes , 2002 .

[15]  Darryl D. Holm,et al.  Integrable vs. nonintegrable geodesic soliton behavior , 1999, solv-int/9903007.

[16]  Darryl D. Holm,et al.  Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in a 1+1 nonlinear evolutionary pde , 2002, nlin/0203007.

[17]  Darryl D. Holm,et al.  A New Integrable Shallow Water Equation , 1994 .

[18]  H. Schroll,et al.  High-Resolution Riemann-Solver-Free Methods for Conservation Laws , 2003 .

[19]  J. Escher,et al.  Wave breaking for nonlinear nonlocal shallow water equations , 1998 .

[20]  Zheng-rong Liu,et al.  Peakons of the Camassa–Holm equation , 2002 .

[21]  B. Leer,et al.  Flux-vector splitting for the Euler equations , 1997 .