Optimization of Sintering Parameters of Submicron Cobalt Metal Powder Using Taguchi Method

The sintering studies of submicron cobalt powder have been presented in this paper. Cobalt powder prepared by thermal decomposition route of cobalt oxalate (CoC2O4.2H2O) has been characterized prior to sintering. In this investigation, the influence of various parameters affecting the sintering process has been analyzed and the optimum processing parameters for maximum sintered density have been determined by using Taguchi method. The parameters considered are the decomposition temperature, compaction pressure and sintering temperature. The effects of these input parameters on the response (percentage sintered density) have been critically analyzed using Taguchi method. It has been found that the sintering temperature is the most important process parameter affecting the sintered density. Sintered density near to theoretical density was obtained when the process parameters were set at their optimum values.

[1]  A. K. Suri,et al.  Sintering kinetics study of mechanically alloyed nanocrystalline Mo-30 wt.% W , 2011 .

[2]  K. R. Jamaludin,et al.  Optimisation of Sintering Factors of Titanium Foams Using Taguchi Method , 2010 .

[3]  S. Banerjee,et al.  Optimization of parameters by Taguchi method for controlling purity of carbon nanotubes in chemical vapour deposition technique. , 2010, Journal of nanoscience and nanotechnology.

[4]  D. Jain,et al.  Sintering kinetics of submicron sized cobalt powder , 2009 .

[5]  M. Joseph Davidson,et al.  Experimental investigation on flow-forming of AA6061 alloy—A Taguchi approach , 2008 .

[6]  A. K. Suri,et al.  Production of high purity cobalt oxalate from spent ammonia cracker catalyst , 2008 .

[7]  A. K. Suri,et al.  Studies on hot deformation of sintered cobalt , 2006 .

[8]  B. Berginc,et al.  The use of the Taguchi approach to determine the influence of injection-moulding parameters on the properties of green parts , 2006 .

[9]  A. K. Suri,et al.  Recovery of high purity cobalt from spent ammonia cracker catalyst , 2005 .

[10]  K. Das,et al.  Sintering kinetics of micrometric titanium powder , 2005 .

[11]  M. O. Lai,et al.  Investigation of complex additives on the microstructure and properties of low-temperature sintered PZT using the Taguchi method , 2005 .

[12]  D. Stamatis,et al.  Orthogonal Arrays and Linear Graphs , 2002 .

[13]  Z. Rakočević,et al.  The Microstructural Changes of Cobalt Powder in Consequence of Cold Pressing Process , 1999 .

[14]  Michiyoshi Tanaka,et al.  Size effect on the crystal phase of cobalt fine particles , 1997 .

[15]  M. A. El Baradie,et al.  Prediction of tool life in end milling by response surface methodology , 1997 .

[16]  P. Taskinen,et al.  CHARACTERISTIC PROPERTIES OF COBALT POWDER SUITABLE FOR HARD METAL PRODUCTION , 1975 .