Evolutionary Multi-Objective Optimization: Basic Concepts and Some Applications in Pattern Recognition

This paper provides a brief introduction to the so-called multi-objective evolutionary algorithms, which are bio-inspired metaheuristics designed to deal with problems having two or more (normally conflicting) objectives. First, we provide some basic concepts related to multi-objective optimization and a brief review of approaches available in the specialized literature. Then, we provide a short review of applications of multi-objective evolutionary algorithms in pattern recognition. In the final part of the paper, we provide some possible paths for future research in this area, which are promising, from the author's perspective.

[1]  Sanghamitra Bandyopadhyay,et al.  Multiobjective GAs, quantitative indices, and pattern classification , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[2]  Carlos A. Coello Coello,et al.  Using Clustering Techniques to Improve the Performance of a Multi-objective Particle Swarm Optimizer , 2004, GECCO.

[3]  David W. Corne,et al.  Properties of an adaptive archiving algorithm for storing nondominated vectors , 2003, IEEE Trans. Evol. Comput..

[4]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[5]  C. Emmanouilidis,et al.  A multiobjective evolutionary setting for feature selection and a commonality-based crossover operator , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[6]  T. Kanade,et al.  Genetic Learning For Adaptive Image Segmentation , 1994 .

[7]  Igor Zwir,et al.  GENERALIZED ANALYSIS OF PROMOTERS: A METHOD FOR DNA SEQUENCE DESCRIPTION , 2004 .

[8]  Flávio Bortolozzi,et al.  Unsupervised feature selection using multi-objective genetic algorithms for handwritten word recognition , 2003, Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings..

[9]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[10]  George Tambouratzis,et al.  Using an Ant Colony Metaheuristic to Optimize Automatic Word Segmentation for Ancient Greek , 2009, IEEE Transactions on Evolutionary Computation.

[11]  Mandava Rajeswari,et al.  Multiobjective Optimization Approaches in Image Segmentation - The Directions and Challenges , 2010 .

[12]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[13]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[14]  Joshua D. Knowles,et al.  ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.

[15]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[16]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[17]  Riccardo Poli,et al.  Genetic and Evolutionary Computation – GECCO 2004 , 2004, Lecture Notes in Computer Science.

[18]  Hajime Kita,et al.  Multi-Objective Optimization by Means of the Thermodynamical Genetic Algorithm , 1996, Parallel Problem Solving from Nature.

[19]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[20]  Hajime Kita,et al.  Multi-Objective Optimization by Means of the Thermodynamical Genetic Algorithm , 1996, PPSN.

[21]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[22]  John J. Grefenstette,et al.  Genetic algorithms and their applications , 1987 .

[23]  P. Hajela,et al.  Genetic search strategies in multicriterion optimal design , 1991 .

[24]  Marcus Randall,et al.  Biologically-Inspired Optimisation Methods: Parallel Algorithms, Systems and Applications , 2009 .

[25]  Wei Wang,et al.  Improved pattern recognition with complex artificial immune system , 2009, Soft Comput..

[26]  Amitava Chatterjee,et al.  A new social and momentum component adaptive PSO algorithm for image segmentation , 2011, Expert Syst. Appl..

[27]  Carlos A. Coello Coello,et al.  The Micro Genetic Algorithm 2: Towards Online Adaptation in Evolutionary Multiobjective Optimization , 2003, EMO.

[28]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[29]  Francisco Rodríguez-Henríquez,et al.  A Genetic Algorithm with repair and local search mechanisms able to find minimal length addition chains for small exponents , 2009, 2009 IEEE Congress on Evolutionary Computation.

[30]  D. Dasgupta Artificial Immune Systems and Their Applications , 1998, Springer Berlin Heidelberg.

[31]  Belur V. Dasarathy,et al.  Nearest neighbor (NN) norms: NN pattern classification techniques , 1991 .

[32]  Donald O. Walter,et al.  Self-Organizing Systems , 1987, Life Science Monographs.

[33]  Gary B. Lamont,et al.  Applications Of Multi-Objective Evolutionary Algorithms , 2004 .

[34]  Jonathan Timmis,et al.  Artificial immune systems - a new computational intelligence paradigm , 2002 .

[35]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[36]  Kalyanmoy Deb,et al.  Evaluating the -Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions , 2005, Evolutionary Computation.

[37]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[38]  J. David Schaffer,et al.  Proceedings of the third international conference on Genetic algorithms , 1989 .

[39]  Fakhri Karray,et al.  Multi-objective Feature Selection with NSGA II , 2007, ICANNGA.

[40]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[41]  Marco Dorigo Ant colony optimization , 2004, Scholarpedia.

[42]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[43]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[44]  Victor J. Rayward-Smith,et al.  Developments on a Multi-objective Metaheuristic (MOMH) Algorithm for Finding Interesting Sets of Classification Rules , 2005, EMO.

[45]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .

[46]  Hans-Paul Schwefel,et al.  Parallel Problem Solving from Nature — PPSN IV , 1996, Lecture Notes in Computer Science.

[47]  Tomoharu Nagao,et al.  Evolutionary image segmentation based on multiobjective clustering , 2009, 2009 IEEE Congress on Evolutionary Computation.

[48]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 , 2000 .

[49]  Carlos A. Coello Coello,et al.  Applications of Parallel Platforms and Models in Evolutionary Multi-Objective Optimization , 2009 .

[50]  Miao Li,et al.  Study of population diversity of multiobjective evolutionary algorithm based on immune and entropy principles , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[51]  Nawwaf N. Kharma,et al.  An efficient image pattern recognition system using an evolutionary search strategy , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[52]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[53]  Bernhard Sendhoff,et al.  Generalizing Surrogate-Assisted Evolutionary Computation , 2010, IEEE Transactions on Evolutionary Computation.

[54]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[55]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..

[56]  Victor J. Rayward-Smith,et al.  The application and effectiveness of a multi-objective metaheuristic algorithm for partial classification , 2006, Eur. J. Oper. Res..

[57]  Jan Wessnitzer,et al.  A Model of Non-elemental Associative Learning in the Mushroom Body Neuropil of the Insect Brain , 2007, ICANNGA.

[58]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[59]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .