A scalable cellular implementation of parallel genetic programming

A new parallel implementation of genetic programming (GP) based on the cellular model is presented and compared with both canonical GP and the island model approach. The method adopts a load-balancing policy that avoids the unequal utilization of the processors. Experimental results on benchmark problems of different complexity show the superiority of the cellular approach with respect to the canonical sequential implementation and the island model. A theoretical performance analysis reveals the high scalability of the implementation realized and allows to predict the size of the population when the number of processors and their efficiency are fixed.

[1]  Jack J. Dongarra,et al.  Algorithmic Redistribution Methods for Block-Cyclic Decompositions , 1999, IEEE Trans. Parallel Distributed Syst..

[2]  Hugues Juill Parallel Genetic Programming on Fine-Grained SIMD Architectures , 2001 .

[3]  Marco Tomassini,et al.  A Parallel Genetic Programming Tool Based on PVM , 1999, PVM/MPI.

[4]  Bastien Chopard,et al.  Parallel Genetic Programming and its Application to Trading Model Induction , 1997, Parallel Comput..

[5]  Erik D. Goodman,et al.  The royal tree problem, a benchmark for single and multiple population genetic programming , 1996 .

[6]  Leonardo Vanneschi,et al.  A Distributed Computing Environment for Genetic Programming Using MPI , 2000, PVM/MPI.

[7]  Hitoshi Iba,et al.  Distributed genetic programming: empirical study and analysis , 1996 .

[8]  W. Martin,et al.  Population Structures C 6 . 3 Island ( migration ) models : evolutionary algorithms based on punctuated equilibria , 1997 .

[9]  Ian Foster,et al.  Designing and building parallel programs , 1994 .

[10]  Giandomenico Spezzano,et al.  CAGE: A Tool for Parallel Genetic Programming Applications , 2001, EuroGP.

[11]  C. Pettey Diffusion (cellular) models , 2000 .

[12]  Marco Tomassini,et al.  Parallel genetic programming: an application to trading models evolution , 1996 .

[13]  L. Darrell Whitley,et al.  Cellular Genetic Algorithms , 1993, ICGA.

[14]  Dimitris C. Dracopoulos,et al.  Speeding up genetic programming: a parallel BSP implementation , 1996 .

[15]  William F. Punch HOW EFFECTIVE ARE MULTIPLE POPULATIONS IN GENETIC PROGRAMMING , 1998 .

[16]  Leonardo Vanneschi,et al.  Studying the Influence of Communication Topology and Migration on Distributed Genetic Programming , 2001, EuroGP.

[17]  John R. Koza Proceedings of the 1st annual conference on genetic programming , 1996 .

[18]  John R. Koza,et al.  Parallel Genetic Programming on a Network of Transputers , 1995 .

[19]  Dimitris C. Dracopoulos,et al.  Bulk Synchronous Parallelisation of Genetic Programming , 1996, PARA.

[20]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[21]  John R. Koza,et al.  Genetic Programming III: Darwinian Invention & Problem Solving , 1999 .

[22]  Vipin Kumar,et al.  Isoefficiency: measuring the scalability of parallel algorithms and architectures , 1993, IEEE Parallel & Distributed Technology: Systems & Applications.

[23]  Giandomenico Spezzano,et al.  Genetic Programming and Simulated Annealing: A Hybrid Method to Evolve Decision Trees , 2000, EuroGP.

[24]  Domenico Talia,et al.  Performance Evaluation and Modeling of MPI Communications on the Meiko CS-2 , 1998, HPCN Europe.

[25]  Hugh Glaser,et al.  Parallel Implementation of a Genetic-Programming Based Tool for Symbolic Regression , 1998, Inf. Process. Lett..

[26]  John R. Koza,et al.  A Parallel Implementation of Genetic Programming that Achieves Super-Linear Performance , 1998, Inf. Sci..

[27]  Lee Spector,et al.  High-performance, parallel, stack-based genetic programming , 1996 .

[28]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[29]  Prabhas Chongstitvatana,et al.  Comparison Between Synchronous and Asynchronous Implementation of Parallel Genetic Programming , 1999 .

[30]  Melanie Mitchell,et al.  The royal road for genetic algorithms: Fitness landscapes and GA performance , 1991 .

[31]  Marco Tomassini,et al.  Experimental Study of Multipopulation Parallel Genetic Programming , 2000, EuroGP.

[32]  Roger W. Hockney,et al.  The Communication Challenge for MPP: Intel Paragon and Meiko CS-2 , 1994, Parallel Computing.

[33]  Leslie G. Valiant,et al.  A bridging model for parallel computation , 1990, CACM.

[34]  Hao Chen,et al.  Parallel Genetic Simulated Annealing: A Massively Parallel SIMD Algorithm , 1998, IEEE Trans. Parallel Distributed Syst..

[35]  John R. Koza,et al.  Genetic Programming II , 1992 .

[36]  Erick Cantú-Paz,et al.  A Summary of Research on Parallel Genetic Algorithms , 1995 .

[37]  Peter J. Angeline,et al.  Massively Parallel Genetic Programming , 1996 .

[38]  James P. Cohoon,et al.  C6.3 Island (migration) models: evolutionary algorithms based on punctuated equilibria , 1997 .