Dimension splitting for quasilinear parabolic equations

In the current paper, we derive a rigorous convergence analysis for a broad range of splitting schemes applied to abstract nonlinear evolution equations, including the Lie and Peaceman-Rachford splittings. The analysis is in particular applicable to (possibly degenerate) quasilinear parabolic problems and their dimension splittings. The abstract framework is based on the theory of maximal dissipative operators, and we both give a summary of the used theory and some extensions of the classical results. The derived convergence results are illustrated by numerical experiments.

[1]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[2]  G. Quispel,et al.  Acta Numerica 2002: Splitting methods , 2002 .

[3]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[4]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[5]  H. Brezis,et al.  Semigroups of nonlinear contractions on convex sets , 1970 .

[6]  E. Zeidler Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .

[7]  H. Gajewski,et al.  Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen , 1974 .

[8]  V. Barbu Nonlinear Semigroups and di erential equations in Banach spaces , 1976 .

[9]  A. Sändig,et al.  Nonlinear Differential Equations , 1980 .

[10]  Erwan Faou,et al.  Analysis of splitting methods for reaction-diffusion problems using stochastic calculus , 2009, Math. Comput..

[11]  Shinnosuke Oharu,et al.  APPROXIMATION OF SEMI-GROUPS OF NONLINEAR OPERATORS , 1970 .

[12]  M. Crandall,et al.  The method of fractional steps for conservation laws , 1980 .

[13]  H. Brezis,et al.  Convergence and approximation of semigroups of nonlinear operators in Banach spaces , 1972 .

[14]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[15]  Christian Lubich,et al.  On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations , 2008, Math. Comput..

[16]  J. Brandts [Review of: W. Hundsdorfer, J.G. Verwer (2003) Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations] , 2006 .

[17]  Z. Teng,et al.  On the accuracy of fractional step methods for conservation laws in two dimensions , 1994 .

[18]  A. Friedman Foundations of modern analysis , 1970 .

[19]  Michael G. Crandall Nonlinear Semigroups and Evolution Governed by Accretive Operators. , 1984 .

[20]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[21]  N. Risebro,et al.  An operator splitting method for nonlinear convection-diffusion equations , 1997 .

[22]  G. Quispel,et al.  Splitting methods , 2002, Acta Numerica.

[23]  Michelle Schatzman,et al.  Stability of the Peaceman–Rachford Approximation , 1999 .

[24]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[25]  K. Deimling Nonlinear functional analysis , 1985 .

[26]  Willem Hundsdorfer,et al.  Stability and convergence of the Peaceman-Rachford ADI method for initial-boundary value problems , 1987 .

[27]  Nils Henrik Risebro,et al.  Corrected Operator Splitting for Nonlinear Parabolic Equations , 2000, SIAM J. Numer. Anal..