Downstream relaxation of velocity profiles in pipe-flow with swirl disturbances

Abstract We study characteristic flow patterns downstream of a standardized swirl disturbance generator using laser-Doppler velocimetry (LDV). To investigate the spatial development of flow patterns, we conduct LDV measurements in cross-sections located at various distances downstream from the swirl disturbance generator. Focusing on velocity profiles, decay of swirl, and performance indicators used to describe the characteristic shape of the velocity profiles, we systematically compare the experimental results with available references and various theories for decay of swirl disturbances. We find that the standardized swirl disturbance generator provides exponentially decaying swirling flow that is best captured by the theory of Steenbergen and Voskamp Steenbergen W, Voskamp J (1998) The rate of decay of swirl in turbulent pipe flow. Flow Meas Instr 9:67–78 . In addition, deviations from the axial reference profile caused by the swirl disturber persist for long downstream distances. In particular, our results suggest that the peakness factor relaxes linearly towards the fully-developed state.

[1]  Wiendelt Steenbergen,et al.  An experimental and numerical study of turbulent swirling pipe flows , 1998 .

[2]  A. H. Algifri,et al.  Heat transfer in turbulent decaying swirl flow in a circular pipe , 1988 .

[3]  Yutaka Katayama,et al.  An Experimental Study of Swirling Flow in Pipes , 1975 .

[4]  Osami Kitoh,et al.  Experimental study of turbulent swirling flow in a straight pipe , 1991, Journal of Fluid Mechanics.

[5]  O. K. Sonju,et al.  The decay of a turbulent swirl in a pipe , 1965, Journal of Fluid Mechanics.

[6]  M. V. Subbaiah,et al.  Experiments on swirling turbulent flows. Part 1. Similarity in swirling flows , 1973, Journal of Fluid Mechanics.

[7]  A. H. Algifri,et al.  Prediction of the Decay Process in Turbulent Swirl Flow , 1987 .

[8]  Z. Lavan,et al.  Measurements of the decay of swirl in turbulent flow. , 1969 .

[9]  Gerta Rocklage-Marliani,et al.  Three-Dimensional Laser-Doppler Velocimeter Measurements in Swirling Turbulent Pipe Flow , 2003 .

[10]  Pipeflow downstream of a reducer and its effects on flowmeters , 1994 .

[11]  D. F. Hinz Reconstruction of turbulent pipe-flow profiles from laser Doppler velocimetry data , 2015 .

[12]  A. Smits,et al.  Mean-flow scaling of turbulent pipe flow , 1998, Journal of Fluid Mechanics.

[13]  Heinz Herwig,et al.  Strömungsmechanik : Grundlagen der Impuls-, Wärme- und Stoffübertragung aus asymptotischer Sicht , 1992 .

[14]  M. Reader-Harris The decay of swirl in a pipe , 1994 .

[15]  A. M. Binnie EXPERIMENTS ON THE SLOW SWIRLING FLOW OF A VISCOUS LIQUID THROUGH A TUBE , 1957 .

[16]  Wiendelt Steenbergen,et al.  The rate of decay of swirl in turbulent pipe flow , 1998 .

[17]  R. Parchen Decay of swirl in turbulent pipe flows , 1993 .

[18]  H. Blasius,et al.  Das Aehnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten , 1913 .

[19]  Decay of Disturbances in Turbulent Pipe Flow , 2005 .

[20]  M. Yorizane,et al.  Solubility of solid naphthalene in gaseous ethylene at high pressures. , 1982 .

[21]  M. Lighthill On the Weis-Fogh mechanism of lift generation , 1973, Journal of Fluid Mechanics.

[22]  Yasutoshi Senoo,et al.  Swirl flow in long pipes with different roughness , 1972 .

[23]  Fred Landis,et al.  Closure to “Discussion of ‘Friction and Forced Convection Heat-Transfer Characteristics in Tubes With Twisted Tape Swirl Generators’” (1964, ASME J. Heat Transfer, 86, p. 48) , 1964 .

[24]  Simon C. M. Yu,et al.  A general formulation for the decay of swirling motion along a straight pipe , 1994 .

[26]  Frank Kreith,et al.  Heat transfer and friction in turbulent vortex flow , 1959 .

[27]  Ulrich Müller,et al.  Vollflächige Erfassung von ungestörten und gestörten Geschwindigkeitsverteilungen in Rohrleitungen mittels der Laser-Doppler-Velocimetrie (Completely Detection of Disturbed and Undisturbed Flow Conditions in Pipes with Laser Doppler Velocimetry) , 2007 .

[28]  Hiroshige Kikura,et al.  Methods to Set Up and Investigate Low Reynolds Number, Fully Developed Turbulent Plane Channel Flows , 1998 .