Low-Mass Binary Induced Outflows from Asymptotic Giant Branch Stars

A significant fraction of planetary nebulae (PNe) and protoplanetary nebulae (PPNe) exhibit aspherical, axisymmetric structures, many of which are highly collimated. The origin of these structures is not entirely understood, however, recent evidence suggests that many observed PNe harbour binary systems, which may play a role in their shaping. In an effort to understand how binaries may produce such asymmetries, we study the effect of low-mass (<0.3M ⊙ ) companions (planets, brown dwarfs and low-mass main-sequence stars) embedded into the envelope of a 3.0-M ⊙ star during three epochs of its evolution [red giant branch, asymptotic giant branch (AGB), interpulse AGB]. We find that common envelope evolution can lead to three qualitatively different consequences: (i) direct ejection of envelope material resulting in a predominately equatorial outflow, (ii) spin-up of the envelope resulting in the possibility of powering an explosive dynamo-driven jet and (iii) tidal shredding of the companion into a disc which facilitates a disc-driven jet. We study how these features depend on the secondary's mass and discuss observational consequences.

[1]  W. Ip,et al.  Evidence for a Binary Origin of the Young Planetary Nebula Hubble 12 , 2006, nlin/0603006.

[2]  P. J. Huggins,et al.  Imaging the circumstellar envelopes of AGB stars , 2006 .

[3]  W. Vlemmings,et al.  A magnetically collimated jet from an evolved star , 2006, Nature.

[4]  N. Soker Why Magnetic Fields Cannot Be the Main Agent Shaping Planetary Nebulae , 2005, astro-ph/0501647.

[5]  E. Blackman,et al.  Extracting rotational energy in supernova progenitors: Transient Poynting flux growth vs. turbulent dissipation , 2004, astro-ph/0410716.

[6]  E. Peeters,et al.  Spitzer Detections of New Dust Components in the Outflow of the Red Rectangle , 2005, astro-ph/0506473.

[7]  N. Soker,et al.  A Possible Hidden Population of Spherical Planetary Nebulae , 2005, astro-ph/0503294.

[8]  Heidelberg,et al.  Discovery of magnetic fields in central stars of planetary nebulae , 2005, astro-ph/0501040.

[9]  M. Irwin,et al.  Planetary Nebulae as Astronomical Tools , 2005 .

[10]  N. Soker The Shaping of the Red Rectangle Proto-Planetary Nebula , 2004, astro-ph/0409332.

[11]  M. Politano The Formation of Cataclysmic Variables with Brown Dwarf Secondaries , 2004, astro-ph/0401224.

[12]  H. Bond,et al.  Indications of a Large Fraction of Spectroscopic Binaries among Nuclei of Planetary Nebulae , 2003, astro-ph/0312410.

[13]  B. Balick,et al.  Asymmetrical planetary nebulae III : proceedings of a meeting held at Mt. Rainier, Washington 28 July - 1 August 2003 , 2004 .

[14]  H. E. Schwarz,et al.  Proper Motion and Kinematics of the Ansae in NGC 7009 , 2003, astro-ph/0311612.

[15]  R. Neri,et al.  Detection of an orbiting gas disk in the Red Rectangle , 2003 .

[16]  S. Kwok,et al.  High-Resolution Near-Infrared Imaging and Polarimetry of Four Proto-Planetary Nebulae , 2003, astro-ph/0304400.

[17]  G. Weigelt,et al.  Properties of the close binary and circumbinary torus of the Red Rectangle , 2002, astro-ph/0206189.

[18]  R. Neri,et al.  The structure and dynamics of the molecular envelope of M 2 56 , 2002 .

[19]  M. Livio,et al.  The Effects of Planets and Brown Dwarfs on Stellar Rotation and Mass Loss , 2002, astro-ph/0204455.

[20]  et al,et al.  Toward Spectral Classification of L and T Dwarfs: Infrared and Optical Spectroscopy and Analysis , 2001, astro-ph/0108443.

[21]  M. Skrutskie,et al.  The Spectra of T Dwarfs. I. Near-Infrared Data and Spectral Classification , 2001, astro-ph/0108452.

[22]  N. Soker,et al.  Turbulent dynamo in asymptotic giant branch stars , 2001, astro-ph/0106301.

[23]  N. Soker Spherical planetary nebulae , 2001, astro-ph/0105142.

[24]  Thomas M. Tauris,et al.  Research Note On the binding energy parameter of common envelope evolution - Dependency on the definition of the stellar core boundary during spiral-in , 2001 .

[25]  J. A. Markiel,et al.  Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae , 2001, Nature.

[26]  N. Soker Extrasolar planets and the rotation and axisymmetric mass-loss of evolved stars , 2000, astro-ph/0006362.

[27]  A. Frank,et al.  Magnetohydrodynamic Stellar and Disk Winds: Application to Planetary Nebulae , 2000, astro-ph/0005288.

[28]  A. Castro-Carrizo,et al.  Mass, linear momentum and kinetic energy of bipolar flows in protoplanetary nebulae , 2001 .

[29]  A. Frank,et al.  Coupled MHD Stellar and Disk Winds: Application to Planetary Nebulae , 2000 .

[30]  Ronald E. Taam,et al.  Common Envelope Evolution of Massive Binary Stars , 2000 .

[31]  C. Dominik,et al.  The effect of grain drift on the structure of (post-) AGB winds 2000 , 1999, astro-ph/9909490.

[32]  M. Reyes-Ruiz,et al.  Accretion Disks in Pre-Planetary Nebulae , 1999 .

[33]  R. Neri,et al.  The Structure and Dynamics of the Proto-Planetary Nebula M1-92 , 1998 .

[34]  H. Winckel,et al.  An oxygen-rich dust disk surrounding an evolved star in the Red Rectangle , 1998, Nature.

[35]  R. Taam,et al.  Double Core Evolution. X. Through the Envelope Ejection Phase , 1998, astro-ph/9801230.

[36]  N. Soker Destruction of Brown Dwarfs and Jet Formation in Planetary Nebulae , 1996 .

[37]  R. Taam,et al.  Double-core evolution. IX. The infall of a main-sequence star through the envelope of its intermediate-mass red giant companion , 1996 .

[38]  A. Manchado,et al.  The IAC Morphological Catalog of Northern Galactic Planetary Nebulae , 1996 .

[39]  J. A. Markiel,et al.  Dynamo Generation of Magnetic Fields in White Dwarfs , 1995 .

[40]  P. Hartigan,et al.  Disk Accretion and Mass Loss from Young Stars , 1995 .

[41]  M. Livio,et al.  A Model for the Galactic Population of Symbiotic Stars with White Dwarf Accretors , 1995 .

[42]  E. Regős,et al.  The effect of magnetic fields in common-envelope evolution on the formation of cataclysmic variables , 1995 .

[43]  S. Pottasch ASYMMETRICAL PLANETARY NEBULAE , 1995 .

[44]  N. Soker,et al.  Evaporation of brown dwarfs in AGB envelopes. , 1994 .

[45]  Paul A. Bradley,et al.  Precision Asteroseismology of Pulsating PG 1159 Stars , 1994 .

[46]  M. Livio,et al.  DISKS AND JETS IN PLANETARY NEBULAE , 1994 .

[47]  M. Livio,et al.  COMMON ENVELOPES IN BINARY STAR EVOLUTION , 1993 .

[48]  E. Parker A solar dynamo surface wave at the interface between convection and nonuniform rotation , 1993 .

[49]  A. Burrows,et al.  An expanded set of brown dwarf and very low mass star models , 1993 .

[50]  G. Mellema,et al.  Astrophysical gasdynamics confronts reality - The shaping of planetary nebulae , 1993 .

[51]  G. Ruediger Differential rotation and stellar convection. Sun and the solar stars , 1989 .

[52]  Mark R. Morris,et al.  MECHANISMS FOR MASS LOSS FROM COOL STARS. , 1987 .

[53]  K. Sawada,et al.  Hydrodynamic calculations of axisymmetric accretion flow , 1985 .

[54]  M. Livio,et al.  The evolution of a star-'planet' system in the double core phase , 1984 .

[55]  M. Livio,et al.  Star–planet systems as possible progenitors of cataclysmic binaries , 1984 .

[56]  R. Webbink Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .

[57]  P. Eggleton Approximations to the radii of Roche lobes , 1983 .

[58]  R. Devaney Celestial mechanics. , 1979, Science.

[59]  W. Y. Chau,et al.  Orbital evolution of a singly condensed, close binary, by mass loss from the primary and by accretion drag on the condensed member , 1976 .

[60]  P. Eggleton,et al.  Structure and Evolution of Close Binary Systems , 1976 .

[61]  E. Salpeter,et al.  The mass-radius relation for cold spheres of low mass , 1969 .

[62]  H. Bondi,et al.  On spherically symmetrical accretion , 1952 .

[63]  A. H. Jarrett,et al.  A New Astronomy , 1898, Nature.