A Memetic Algorithm for Multiple-Drug Cancer Chemotherapy Schedule Optimization

This correspondence introduces a multidrug cancer chemotherapy model to simulate the possible response of the tumor cells under drug administration. We formulate the model as an optimal control problem. The algorithm in this correspondence optimizes the multidrug cancer chemotherapy schedule. The objective is to minimize the tumor size under a set of constraints. We combine the adaptive elitist genetic algorithm with a local search algorithm called iterative dynamic programming (IDP) to form a new memetic algorithm (MA-IDP) for solving the problem. MA-IDP has been shown to be very efficient in solving the multidrug scheduling optimization problem

[1]  Hisao Ishibuchi,et al.  Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling , 2003, IEEE Trans. Evol. Comput..

[2]  R. Bellman Dynamic programming. , 1957, Science.

[3]  J. Banga,et al.  Dynamic Optimization of Batch Reactors Using Adaptive Stochastic Algorithms , 1997 .

[4]  R. B. Martin,et al.  Optimal control drug scheduling of cancer chemotherapy , 1992, Autom..

[5]  Urszula Ledzewicz,et al.  Optimal Bang-Bang Controls for a Two-Compartment Model in Cancer Chemotherapy , 2002 .

[6]  Gabriela Ochoa,et al.  Heuristic design of cancer chemotherapies , 2004, IEEE Transactions on Evolutionary Computation.

[7]  R. Luus,et al.  Multiplicity of solutions in the optimization of a bifunctional catalyst blend in a tubular reactor , 1992 .

[8]  John A. Adam,et al.  A mathematical model of cycle-specific chemotherapy , 1995 .

[9]  M. Abundo,et al.  Numerical simulation of a stochastic model for cancerous cells submitted to chemotherapy , 1989, Journal of mathematical biology.

[10]  Graham Kendall,et al.  A Tabu-Search Hyperheuristic for Timetabling and Rostering , 2003, J. Heuristics.

[11]  Martin M. Eisen,et al.  Mathematical Models in Cell Biology and Cancer Chemotherapy , 1979 .

[12]  Kwong-Sak Leung,et al.  Adaptive Elitist-Population Based Genetic Algorithm for Multimodal Function Optimization , 2003, GECCO.

[13]  R. DeCarlo,et al.  Systematic method for determining intravenous drug treatment strategies aiding the humoral immune response , 1998, IEEE Transactions on Biomedical Engineering.

[14]  Kevin Kok Wai Wong,et al.  Classification of adaptive memetic algorithms: a comparative study , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[15]  Rein Luus,et al.  Iterative dynamic programming , 2019, Iterative Dynamic Programming.

[16]  José Luiz Boldrini,et al.  Therapy burden, drug resistance, and optimal treatment regimen for cancer chemotherapy , 2000 .

[17]  Rein Luus,et al.  Global optimization of the bifunctional catalyst problem , 1994 .

[18]  R. Bassanezi,et al.  Drug kinetics and drug resistance in optimal chemotherapy. , 1995, Mathematical biosciences.

[19]  J. J. Westman,et al.  Compartmental Model for Cancer Evolution: Chemotherapy and Drug Resistance , 2001 .

[20]  Kwong-Sak Leung,et al.  A novel evolutionary drug scheduling model in cancer chemotherapy , 2006, IEEE Transactions on Information Technology in Biomedicine.

[21]  Shea N Gardner,et al.  Cell Cycle Phase-Specific CHemotherapy: Computation Methods for Guiding Treatment , 2002, Cell cycle.

[22]  Andy J. Keane,et al.  Meta-Lamarckian learning in memetic algorithms , 2004, IEEE Transactions on Evolutionary Computation.

[23]  Jürgen Teich,et al.  Systematic integration of parameterized local search into evolutionary algorithms , 2004, IEEE Transactions on Evolutionary Computation.

[24]  Rein Luus,et al.  Optimal control of batch reactors by iterative dynamic programming , 1994 .

[25]  Bayliss C. McInnis,et al.  Optimal control of bilinear systems: Time-varying effects of cancer drugs , 1979, Autom..

[26]  Zbigniew Michalewicz,et al.  Genetic algorithms and optimal control problems , 1990, 29th IEEE Conference on Decision and Control.

[27]  J. J. Westman,et al.  Cancer Treatment Using Multiple Chemotheraputic Agents Subject to Drug Resistance , 2022 .

[28]  Kok Lay Teo,et al.  Optimal Control of Drug Administration in Cancer Chemotherapy , 1993 .

[29]  James Smith,et al.  A tutorial for competent memetic algorithms: model, taxonomy, and design issues , 2005, IEEE Transactions on Evolutionary Computation.

[30]  Ami Radunskaya,et al.  A mathematical tumor model with immune resistance and drug therapy: an optimal control approach , 2001 .