Spatially-Variant Anisotropic Morphological Filters Driven by Gradient Fields

This paper deals with the theory and applications of spatially-variant mathematical morphology. We formalize the definition of spatially variant dilation/erosion and opening/closing for gray-level images using exclusively the structuring function, without resorting to complement. This sound theoretical framework allows to build morphological operators whose structuring elements can locally adapt their orientation across the dominant direction of image structures. The orientation at each pixel is extracted by means of a diffusion process of the average square gradient field, which regularizes and extends the orientation information from the edges of the objects to the homogeneous areas of the image. The proposed filters are used for enhancement of anisotropic images features such as coherent, flow-like structures.

[1]  Jerry L. Prince,et al.  Generalized gradient vector flow external forces for active contours , 1998, Signal Process..

[2]  Pietro Perona,et al.  Orientation diffusions , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[3]  Pierre Soille,et al.  Morphological Image Analysis , 1999 .

[4]  Dan Schonfeld,et al.  Theoretical Foundations of Spatially-Variant Mathematical Morphology Part II: Gray-Level Images , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  H. Heijmans Morphological image operators , 1994 .

[6]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[7]  Michael Breuß,et al.  Anisotropic Continuous-Scale Morphology , 2007, IbPRIA.

[8]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[9]  Hugues Talbot,et al.  Path Openings and Closings , 2005, Journal of Mathematical Imaging and Vision.

[10]  Motyka,et al.  TITAN: A TRAFFIC MEASUREMENT SYSTEM USING IMAGE PROCESSING TECHNIQUES. SECOND INTERNATIONAL CONFERENCE ON ROAD TRAFFIC MONITORING , 1989 .

[11]  Petr Dokládal,et al.  Grey-Scale Morphology with Spatially-Variant Rectangles in Linear Time , 2008, ACIVS.

[12]  Thomas S. Huang,et al.  Image processing , 1971 .

[13]  Jos B. T. M. Roerdink,et al.  Group morphology , 2000, Pattern Recognit..

[14]  Hugues Talbot,et al.  Directional Morphological Filtering , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Henk J. A. M. Heijmans,et al.  The algebraic basis of mathematical morphology. I Dilations and erosions , 1990, Comput. Vis. Graph. Image Process..

[16]  Sabih H. Gerez,et al.  Systematic Methods for the Computation of the Directional Fields and Singular Points of Fingerprints , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  H. Heijmans,et al.  The algebraic basis of mathematical morphology , 1988 .

[18]  Hugues Talbot,et al.  Curvilinear morpho-Hessian filter , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[19]  Henk J. A. M. Heijmans,et al.  The algebraic basis of mathematical morphology : II. Openings and closings , 1991, CVGIP Image Underst..

[20]  Andrew P. Witkin,et al.  Analyzing Oriented Patterns , 1985, IJCAI.

[21]  Etienne Decencière,et al.  Image filtering using morphological amoebas , 2007, Image Vis. Comput..

[22]  Olivier Cuisenaire Locally adaptable mathematical morphology using distance transformations , 2006, Pattern Recognit..