Design and statistical analysis of a hybrid local search algorithm for course timetabling

We propose a hybrid local search algorithm for the solution of the Curriculum-Based Course Timetabling Problem and we undertake a systematic statistical study of the relative influence of the relevant features on the performances of the algorithm. In particular, we apply modern statistical techniques for the design and analysis of experiments, such as nearly orthogonal space-filling Latin hypercubes and response surface methods. As a result of this analysis, our technique, properly tuned, compares favorably with the best known ones for this problem.

[1]  Hana Rudová,et al.  Modeling and Solution of a Complex University Course Timetabling Problem , 2006, PATAT.

[2]  Ben Paechter,et al.  Setting the Research Agenda in Automated Timetabling: The Second International Timetabling Competition , 2010, INFORMS J. Comput..

[3]  Jin-Kao Hao,et al.  Adaptive Tabu Search for course timetabling , 2010, Eur. J. Oper. Res..

[4]  Thomas Stützle,et al.  Engineering Stochastic Local Search Algorithms. Designing, Implementing and Analyzing Effective Heuristics, Second International Workshop, SLS 2009, Brussels, Belgium, September 3-4, 2009. Proceedings , 2009, SLS.

[5]  Terry Speed Statistics for Experimenters: Design, Innovation, and Discovery (2nd ed.) , 2006 .

[6]  Stefan Nickel,et al.  Operations Research, Proceedings 2007, Selected Papers of the Annual International Conference of the German Operations Research Society (GOR), Saarbrücken, Germany, September 5-7, 2007 , 2008, OR.

[8]  Marco E. Lübbecke,et al.  Curriculum Based Course Timetabling: Optimal Solutions to the Udine Benchmark Instances , 2008 .

[9]  Edmund K. Burke,et al.  Practice and Theory of Automated Timetabling VI, 6th International Conference, PATAT 2006, Brno, Czech Republic, August 30 - September 1, 2006, Revised Selected Papers , 2007, PATAT.

[10]  Thomas W. Lucas,et al.  Efficient Nearly Orthogonal and Space-Filling Latin Hypercubes , 2007, Technometrics.

[11]  Daniel Kudenko,et al.  Tuning the Performance of the MMAS Heuristic , 2007, SLS.

[12]  Gilbert Laporte,et al.  A Tabu Search Heuristic for the Vehicle Routing Problem , 1991 .

[13]  Leslie Barrette Engineering Stochastic Local Search Algorithms. Designing, Implementing and Analyzing Effective Heuristics, International Workshop, SLS 2007, Brussels, Belgium, September 6-8, 2007, Proceedings , 2007, SLS.

[14]  Holger H. Hoos,et al.  A Modular Multiphase Heuristic Solver for Post Enrolment Course Timetabling , 2008 .

[15]  Sanja Petrovic,et al.  A graph-based hyper-heuristic for educational timetabling problems , 2007, Eur. J. Oper. Res..

[16]  Jørgen Bang-Jensen,et al.  Mixed Models for the Analysis of Local Search Components , 2007, SLS.

[17]  Barry McCollum,et al.  The Second International Timetabling Competition (ITC-2007): Curriculum-based Course Timetabling (Track 3) — preliminary presentation — , 2007 .

[18]  Manuel Laguna,et al.  Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search , 2006, Oper. Res..

[19]  Patrick De Causmaecker,et al.  A decomposed metaheuristic approach for a real-world university timetabling problem , 2009, Eur. J. Oper. Res..

[20]  D. Bates,et al.  Mixed-Effects Models in S and S-PLUS , 2001 .

[21]  Kurt Hornik,et al.  Implementing a Class of Permutation Tests: The coin Package , 2008 .

[22]  Tomás Müller,et al.  ITC2007 solver description: a hybrid approach , 2009, Ann. Oper. Res..

[23]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .

[24]  Thomas P. Ryan,et al.  Modern Experimental Design: Ryan/Experimental Design , 2007 .

[25]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[26]  Marco E. Lübbecke,et al.  Optimal University Course Timetables and the Partial Transversal Polytope , 2008, WEA.

[27]  Robert G. Easterling,et al.  Modern Experimental Design , 2007, Technometrics.

[28]  D. Kudenko,et al.  Sequential Experiment Designs for Screening and Tuning Parameters of Stochastic Heuristics , 2006 .

[29]  Edmund K. Burke,et al.  Penalising Patterns in Timetables: Novel Integer Programming Formulations , 2007, OR.

[30]  Joseph G. Pigeon,et al.  Statistics for Experimenters: Design, Innovation and Discovery , 2006, Technometrics.

[31]  Thomas Stützle,et al.  Automatic Algorithm Configuration Based on Local Search , 2007, AAAI.

[32]  R. H. Myers,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[33]  George C. Runger,et al.  Using Experimental Design to Find Effective Parameter Settings for Heuristics , 2001, J. Heuristics.

[34]  Thomas Stützle,et al.  Engineering Stochastic Local Search Algorithms: Designing, Implementing and Analyzing Effective Heuristics, 2nd International Workshop , 2007 .

[35]  Pascal Van Hentenryck,et al.  A simulated annealing approach to the traveling tournament problem , 2006, J. Sched..

[36]  Luca Di Gaspero,et al.  Benchmarking curriculum-based course timetabling: formulations, data formats, instances, validation, visualization, and results , 2012, Ann. Oper. Res..

[37]  Jack P. C. Kleijnen,et al.  State-of-the-Art Review: A User's Guide to the Brave New World of Designing Simulation Experiments , 2005, INFORMS J. Comput..

[38]  Luca Di Gaspero,et al.  Neighborhood Portfolio Approach for Local Search Applied to Timetabling Problems , 2006, J. Math. Model. Algorithms.