Performance Optimization of Antenna-Coupled ${\rm Al}/{\rm AlO}_{x}/{\rm Pt}$ Tunnel Diode Infrared Detectors

Signal-to-noise ratio (SNR) is a valuable figure of merit in determining the operating scope of infrared detectors. Antenna-couple metal-oxide-metal diodes have been shown to detect infrared radiation without cooling or applied bias, but so far have been hampered by their SNR. This paper details a comprehensive study of the fabrication parameters that control the formation of the tunneling oxide barrier to optimize the performance of these detectors. Since the tunneling barrier affects both current-voltage and infrared detection characteristics, fabrication parameters can be optimized to improve device performance. The current-voltage characteristics of the devices are detailed in this paper; resistance, nonlinearity, and curvature coefficient are parameterized on fabrication procedures. Infrared detection characteristics are detailed and SNR is studied as a function of device nonlinearity and biasing conditions.

[1]  Ingrid Wilke,et al.  Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation , 1994 .

[2]  K. Evenson,et al.  Characteristics of tungsten-nickel point contact diodes used as laser harmonic-generator mixers , 1974 .

[3]  D. Sokoloff,et al.  EXTENSION OF LASER HARMONIC‐FREQUENCY MIXING TECHNIQUES INTO THE 9 μ REGION WITH AN INFRARED METAL‐METAL POINT‐CONTACT DIODE , 1969 .

[4]  Glenn D. Boreman,et al.  Antenna-coupled metal-oxide-metal diodes for dual-band detection at 92.5 GHz and 28 THz , 2004 .

[5]  A. Javan,et al.  FREQUENCY MIXING IN THE INFRARED AND FAR‐INFRARED USING A METAL‐TO‐METAL POINT CONTACT DIODE , 1968 .

[6]  D. L. Smythe,et al.  ac electron tunneling at infrared frequencies: Thin‐film M‐O‐M diode structure with broad‐band characteristics , 1974 .

[7]  T. K. Gustafson,et al.  Optical detection in thin‐film metal‐oxide‐metal diodes , 1974 .

[8]  R. V. Overstraeten,et al.  Role of trap states in the insulator region for MIM characteristics , 1975 .

[9]  T. Ohno,et al.  First-Principles Study of Dielectric Properties of Amorphous High-k Materials , 2007 .

[10]  G D Boreman,et al.  Polarization response of asymmetric-spiral infrared antennas. , 1997, Applied optics.

[11]  H. Rothuizen,et al.  Spatial impulse response of lithographic infrared antennas. , 1999, Applied optics.

[12]  Glenn D. Boreman,et al.  Detection mechanisms in microstrip dipole antenna-coupled infrared detectors , 2003 .

[13]  Arthur Robert Weeks,et al.  Design, fabrication, and characterization of antenna-coupled metal-oxide-metal diodes for dual-band detection , 2005 .

[14]  G. J. Dolan,et al.  Offset masks for lift‐off photoprocessing , 1977 .

[15]  M. Ohring The Materials Science of Thin Films , 1991 .

[16]  H. Rothuizen,et al.  Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation , 1998 .

[17]  S. Schwarz,et al.  Mechanism and properties of point‐contact metal‐insulator‐metal diode detectors at 10.6 μ , 1974 .

[18]  T. K. Gustafson,et al.  Coupling characteristics of thin‐film metal‐oxide‐metal diodes at 10.6 μ , 1975 .

[19]  T. Bridges,et al.  Radiation of difference frequencies produced by mixing in metal‐barrier‐metal diodes , 1974 .

[20]  Kenneth M. Evenson,et al.  ABSOLUTE FREQUENCY MEASUREMENTS OF THE CO2 cw LASER AT 28 THz (10.6μm) , 1970 .

[21]  F. Bardou,et al.  Nanometric cartography of tunnel current in metal–oxide junctions , 1998 .

[22]  Wolfgang Porod,et al.  Controlled etching and regrowth of tunnel oxide for antenna-coupled metal-oxide-metal diodes , 2009 .

[23]  Ingrid Wilke,et al.  Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation , 1994 .

[24]  Christophe Fumeaux,et al.  Mixing of 30 THz laser radiation with nanometer thin-film Ni-NiO-Ni diodes and integrated bow-tie antennas , 1996 .

[25]  D. Diesing,et al.  Identification of multiphoton induced photocurrents in metal–insulator–metal junctions , 2004 .

[26]  W. Porod,et al.  Tunable antenna-coupled metal-oxide-metal (MOM) uncooled IR detector (Invited Paper) , 2005, SPIE Defense + Commercial Sensing.

[27]  Mark T. Kief,et al.  In-situ ellipsometric measurements of thin film aluminum oxidation , 2000, SPIE Optics + Photonics.

[28]  D. Diesing,et al.  Photon-assisted tunneling versus tunneling of excited electrons in metal–insulator–metal junctions , 2004 .

[29]  Investigation of Antenna-Coupled MOM Diodes for Infrared Sensor Applications , 2006 .

[30]  C. Fumeaux,et al.  Lithographic antennas at visible frequencies. , 1999, Optics letters.

[31]  B. M. Kale Electron Tunneling Devices In Optics , 1985 .

[32]  Wolfgang Porod,et al.  Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes , 2009 .

[33]  D. Sokoloff,et al.  EXTENSION OF LASER HARMONIC‐FREQUENCY MIXING INTO THE 5‐μ REGIONS , 1970 .

[34]  J. Whinnery,et al.  IIb-7 edge-MOM diode: An integrated, optical, non-linear device , 1977, IEEE Transactions on Electron Devices.

[35]  J. Tucker,et al.  Photon detection in nonlinear tunneling devices , 1978 .

[36]  J. Whinnery,et al.  Characteristics of integrated MOM junctions at DC and at optical frequencies , 1978, IEEE Journal of Quantum Electronics.

[37]  S. M. Faris,et al.  Detection of optical and infrared radiation with DC-biased electron-tunneling metal-barrier-metal diodes , 1973 .

[38]  Frank R Libsch,et al.  Ni-NiO-Ni tunnel junctions for terahertz and infrared detection. , 2005, Applied optics.

[39]  Jukka P. Pekola,et al.  Properties of native ultrathin aluminium oxide tunnel barriers , 2003 .

[40]  J. Simmons Electric Tunnel Effect between Dissimilar Electrodes Separated by a Thin Insulating Film , 1963 .

[41]  F. J. González Noise measurements on optical detectors , 2006 .

[42]  Ali Javan,et al.  The MOM tunneling diode - Theoretical estimate of its performance at microwave and infrared frequencies , 1978 .

[43]  Evaporation of uniform antireflection coatings on hemispherical lenses to enhance infrared antenna gain , 2010 .