New ground-based lidar enables volcanic CO2 flux measurements

There have been substantial advances in the ability to monitor the activity of hazardous volcanoes in recent decades. However, obtaining early warning of eruptions remains challenging, because the patterns and consequences of volcanic unrests are both complex and nonlinear. Measuring volcanic gases has long been a key aspect of volcano monitoring since these mobile fluids should reach the surface long before the magma. There has been considerable progress in methods for remote and in-situ gas sensing, but measuring the flux of volcanic CO2—the most reliable gas precursor to an eruption—has remained a challenge. Here we report on the first direct quantitative measurements of the volcanic CO2 flux using a newly designed differential absorption lidar (DIAL), which were performed at the restless Campi Flegrei volcano. We show that DIAL makes it possible to remotely obtain volcanic CO2 flux time series with a high temporal resolution (tens of minutes) and accuracy (<30%). The ability of this lidar to remotely sense volcanic CO2 represents a major step forward in volcano monitoring, and will contribute improved volcanic CO2 flux inventories. Our results also demonstrate the unusually strong degassing behavior of Campi Flegrei fumaroles in the current ongoing state of unrest.

[1]  Antonio Palucci,et al.  Measurement of Mount Etna plume by CO2-laser-based lidar. , 2009, Optics letters.

[2]  W. Marzocchi,et al.  Long-term forecast of eruption style and size at Campi Flegrei caldera (Italy) , 2009 .

[3]  Sune Svanberg,et al.  Monitoring of volcanic sulphur dioxide emissions using differential absorption lidar (DIAL), differential optical absorption spectroscopy (DOAS), and correlation spectroscopy (COSPEC) , 1998 .

[4]  Clive Oppenheimer,et al.  Sulfur Degassing From Volcanoes: Source Conditions, Surveillance, Plume Chemistry and Earth System Impacts , 2011 .

[5]  Luca Fiorani,et al.  Volcanic CO2 detection with a DFM/OPA-based lidar. , 2015, Optics letters.

[6]  W. Evans,et al.  Deep magmatic degassing versus scrubbing: Elevated CO2emissions and C/S in the lead‐up to the 2009 eruption of Redoubt Volcano, Alaska , 2012 .

[7]  Daniel Dzurisin,et al.  A comprehensive approach to monitoring volcano deformation as a window on the eruption cycle , 2003 .

[8]  Jirong Yu,et al.  Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements. , 2008, Applied optics.

[9]  A. McGonigle,et al.  Passive vs. active degassing modes at an open-vent volcano (Stromboli, Italy) , 2012 .

[10]  P. Zettwoog,et al.  Eruptive and diffuse emissions of CO2 from Mount Etna , 1991, Nature.

[11]  F. Innocenti,et al.  Phlegraean Fields 1982–1984: Brief chronicle of a volcano emergency in a densely populated area , 1984 .

[12]  Bernard A. Chouet,et al.  Long-period volcano seismicity: its source and use in eruption forecasting , 1996, Nature.

[13]  R. S. J. Sparks,et al.  Global link between deformation and volcanic eruption quantified by satellite imagery , 2014, Nature Communications.

[14]  B. Chouet,et al.  A multi-decadal view of seismic methods for detecting precursors of magma movement and eruption , 2013 .

[15]  Carlo Cardellini,et al.  Volcanic CO2 flux measurement at Campi Flegrei by tunable diode laser absorption spectroscopy , 2014, Bulletin of Volcanology.

[16]  Clive Oppenheimer,et al.  Volcanic Degassing: Process and Impact , 2014 .

[17]  G. Orsi,et al.  Volcanic hazard assessment at the restless Campi Flegrei caldera , 2004 .

[18]  Rosario Avino,et al.  Early signals of new volcanic unrest at Campi Flegrei caldera? Insights from geochemical data and physical simulations , 2012 .

[19]  Mike Burton,et al.  Spectroscopic considerations on DIAL measurement of carbon dioxide in volcanic emissions , 2013 .

[20]  Christoph Kern,et al.  Network for Observation of Volcanic and Atmospheric Change (NOVAC)—A global network for volcanic gas monitoring: Network layout and instrument description , 2010 .

[21]  Jun Li,et al.  The use of 1572 nm Mie LiDAR for observation of the optical properties of aerosols over Wuhan, China , 2014 .

[22]  Freysteinn Sigmundsson,et al.  Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland , 2014, Nature.

[23]  J. Cuesta,et al.  Vertical 2-μm Heterodyne Differential Absorption Lidar Measurements of Mean CO2 Mixing Ratio in the Troposphere , 2008 .

[24]  Mike Burton,et al.  Deep Carbon Emissions from Volcanoes , 2013 .

[25]  Jon J. Major,et al.  Dynamics of seismogenic volcanic extrusion at Mount St Helens in 2004–05 , 2006, Nature.

[26]  T. Gerlach,et al.  Application of the LI-COR CO2 analyzer to volcanic plumes: A case study, volcán Popocatépetl, Mexico, June 7 and 10, 1995 , 1997 .

[27]  Antonio Palucci,et al.  First-time lidar measurement of water vapor flux in a volcanic plume , 2011 .

[28]  Y. Hirano,et al.  Development of 1.6 microm continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing. , 2009, Optics letters.

[29]  M. Edmonds,et al.  New geochemical insights into volcanic degassing , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[30]  M. Liuzzo,et al.  Rates of carbon dioxide plume degassing from Mount Etna volcano , 2006 .

[31]  B. Marty,et al.  Noble gases and volatile recycling at subduction zones , 2002 .

[32]  Freysteinn Sigmundsson,et al.  Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption , 2010, Nature.

[33]  C. Oppenheimer,et al.  Remote sensing of CO2 and H2O emission rates from Masaya volcano, Nicaragua , 2000 .

[34]  T. Fischer Fluxes of volatiles (H2O, CO2, N2, Cl, F) from arc volcanoes , 2008 .

[35]  Surono,et al.  Structure and CO2 budget of Merapi volcano during inter-eruptive periods , 2009 .

[36]  Michael P. Poland,et al.  A mantle-driven surge in magma supply to Kīlauea Volcano during 2003–2007 , 2012 .

[37]  D. Tratt,et al.  Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements. , 2003, Applied optics.

[38]  Michael Wojcik,et al.  Development of differential absorption lidar (DIAL) for detection of CO2, CH4 and PM in Alberta , 2005, Sensing Technologies + Applications.

[39]  C. Oppenheimer,et al.  Probing the magma plumbing of Erebus volcano, Antarctica, by open-path FTIR spectroscopy of gas emissions , 2008 .

[40]  G. Chiodini CO2/CH4 ratio in fumaroles a powerful tool to detect magma degassing episodes at quiescent volcanoes , 2009 .

[41]  J. Biggs,et al.  Monitoring Volcanoes , 2012, Science.

[42]  Hiroshi Shinohara,et al.  Visible and invisible volcanic plumes , 2006 .

[43]  Alessandro Aiuppa,et al.  Volcanic-gas monitoring , 2015 .

[44]  Prospero De Martino,et al.  GPS time series at Campi Flegrei caldera (2000-2013) , 2014 .

[45]  Mike Burton,et al.  Unusually large magmatic CO2 gas emissions prior to a basaltic paroxysm , 2010 .

[46]  C. Oppenheimer,et al.  High temporal resolution SO2 flux measurements at Erebus volcano, Antarctica , 2010 .

[47]  Clive Oppenheimer,et al.  Automated, high time-resolution measurements of SO2 flux at Soufrière Hills Volcano, Montserrat , 2003 .

[48]  Mike Burton,et al.  The SO2 camera: A simple, fast and cheap method for ground‐based imaging of SO2 in volcanic plumes , 2006 .

[49]  Carlo Cardellini,et al.  First observations of the fumarolic gas output from a restless caldera: Implications for the current period of unrest (2005–2013) at Campi Flegrei , 2013 .

[50]  Federico Angelini,et al.  Lidar sounding of volcanic plumes , 2013, Remote Sensing.

[51]  G. Chiodini,et al.  Geochemical evidences of magma dynamics at Campi Flegrei (Italy) , 2014 .

[52]  R. Menzies,et al.  Doppler lidar atmospheric wind sensors: a comparative performance evaluation for global measurement applications from earth orbit. , 1986, Applied optics.

[53]  Rosario Avino,et al.  The origin of the fumaroles of La Solfatara (Campi Flegrei, South Italy) , 2007 .

[54]  Gilles Faÿ,et al.  Características inmunológicas claves en la fisiopatología de la sepsis. Infectio , 2009 .

[55]  Luca D'Auria,et al.  Evidence of thermal-driven processes triggering the 2005–2014 unrest at Campi Flegrei caldera , 2015 .