Lattice point problems and distribution of values of quadratic forms

For d-dimensional irrational ellipsoids E with d > 9 we show that the number of lattice points in rE is approximated by the volume of rE, as r tends to infinity, up to an error of order o(rd-2). The estimate refines an earlier authors' bound of order O(rd-2) which holds for arbitrary ellipsoids, and is optimal for rational ellipsoids. As an application we prove a conjecture of Davenport and Lewis that the gaps between successive values, say s 0 as s - oo, for d > 9. For comparison note that sups(n(s) - s) 0, for rational Q[x] and d > 5. As a corollary we derive Oppenheim's conjecture for indefinite irrational quadratic forms, i.e., the set Q[Zd] is dense in R, for d > 9, which was proved for d > 3 by G. Margulis [Marl] in 1986 using other methods. Finally, we provide explicit bounds for errors in terms of certain characteristics of trigonometric sums.

[1]  F. Götze,et al.  Optimal Bounds in Non-Gaussian Limit Theorems for U-Statistics , 1999 .

[2]  A. Eskin,et al.  UPPER BOUNDS AND ASYMPTOTICS IN A QUANTITATIVE VERSION OF THE OPPENHEIM CONJECTURE , 1998 .

[3]  F. Götze,et al.  Uniform rates of convergence in the CLT for quadratic forms in multidimensional spaces , 1997 .

[4]  Friedrich Götze,et al.  On the lattice point problem for ellipsoids , 1997 .

[5]  F. Götze,et al.  Optimal rates of convergence in the CLT for quadratic forms , 1996 .

[6]  W. Nowak,et al.  Lattice points in large convex bodies, II , 1992 .

[7]  Werner Georg Nowak,et al.  Lattice points in large convex bodies , 1991 .

[8]  G. Margulis Discrete Subgroups and Ergodic Theory , 1989 .

[9]  H. Iwaniec,et al.  On the order of $\zeta (\frac{1}{2} + it)$ , 1986 .

[10]  R. Cook,et al.  Indefinite quadratic polynomials of small signature , 1984 .

[11]  S. Dani On orbits of unipotent flows on homogeneous spaces , 1984, Ergodic Theory and Dynamical Systems.

[12]  T. Matthes The Multivariate Central Limit Theorem for Regular Convex Sets , 1975 .

[13]  J. K. Yarnold Asymptotic Approximations for the Probability that a Sum of Lattice Random Vectors Lies in a Convex Set , 1972 .

[14]  H. Davenport,et al.  Gaps between values of positive definite quadratic forms , 1972 .

[15]  Arnold Walfisz,et al.  Gitterpunkte in Mehrdimensionalen Kugeln , 1960, The Mathematical Gazette.

[16]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[17]  H. Davenport Indefinite Quadratic Forms in Many Variables (II) , 1958 .

[18]  H. Davenport,et al.  Indefinite quadratic forms in many variables , 1956 .

[19]  E. Hlawka Über Integrale auf konvexen Körpern I , 1950 .

[20]  S. Min On the Order of ?(1/2+it) , 1949 .

[21]  Kai Lai Chung,et al.  A Course in Probability Theory , 1949 .

[22]  C. Esseen Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law , 1945 .

[23]  A. Oppenheim THE MINIMA OF INDEFINITE QUATERNARY QUADRATIC FORMS. , 1929, Proceedings of the National Academy of Sciences of the United States of America.

[24]  A. Walfisz,et al.  ber Gitterpunkte in mehrdimensionalen Ellipsoiden , 1924 .

[25]  E. Landau,et al.  Über Gitterpunkte in mehrdimensionalen Ellipsoiden , 1924 .

[26]  H. Weyl Über die Gleichverteilung von Zahlen mod. Eins , 1916 .