Two-dimensional online bin packing with rotation

In two-dimensional bin packing problems, the input items are rectangles which need to be packed in a non-overlapping manner. The goal is to assign the items into unit squares using an axis-parallel packing. Most previous work on online packing concentrated on items of fixed orientation, which must be assigned such that their bottom side is parallel to the bottom of the bin. In this paper we study the case of rotatable items, which can be rotated by ninety degrees. We give almost tight bounds on the (asymptotic) competitive ratio of bounded space bin packing of rotatable items, and introduce a new unbounded space algorithm. This improves the results of Fujita and Hada.

[1]  Guochuan Zhang,et al.  A new upper bound 2.5545 on 2D Online Bin Packing , 2011, TALG.

[2]  Tommy R. Jensen,et al.  Graph Coloring Problems , 1994 .

[3]  Jeffrey D. Ullman,et al.  Worst-Case Performance Bounds for Simple One-Dimensional Packing Algorithms , 1974, SIAM J. Comput..

[4]  Leah Epstein,et al.  Bounds for online bounded space hypercube packing , 2007, Discret. Optim..

[5]  Leah Epstein,et al.  Online square and cube packing , 2005, Acta Informatica.

[6]  Silvano Martello,et al.  Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization , 2012 .

[7]  Alberto Caprara,et al.  A New Approximation Method for Set Covering Problems, with Applications to Multidimensional Bin Packing , 2009, SIAM J. Comput..

[8]  Daniele Vigo,et al.  Neighborhood Search Algorithm for the Guillotine Non-Oriented Two-Dimensional Bin Packing Problem , 1999 .

[9]  Prabhakar Raghavan,et al.  Multidimensional on-line bin packing: Algorithms and worst-case analysis , 1989 .

[10]  Leah Epstein,et al.  Optimal Online Algorithms for Multidimensional Packing Problems , 2005, SIAM J. Comput..

[11]  Guochuan Zhang,et al.  A New Upper Bound on 2D Online Bin Packing , 2009, ArXiv.

[12]  J. B. G. Frenk,et al.  Two-Dimensional Rectangle Packing: On-Line Methods and Results , 1993, Discret. Appl. Math..

[13]  Daniele Vigo,et al.  A lower bound for the non-oriented two-dimensional bin packing problem , 2002, Discret. Appl. Math..

[14]  Rob van Stee,et al.  New Bounds for Multidimensional Packing , 2003, Algorithmica.

[15]  André van Vliet,et al.  An Improved Lower Bound for On-Line Bin Packing Algorithms , 1992, Inf. Process. Lett..

[16]  Satoshi Fujita,et al.  Two-dimensional on-line bin packing problem with rotatable items , 2002, Theor. Comput. Sci..

[17]  David S. Johnson,et al.  Near-optimal bin packing algorithms , 1973 .

[18]  David S. Johnson,et al.  Fast Algorithms for Bin Packing , 1974, J. Comput. Syst. Sci..

[19]  Gábor Galambos,et al.  Lower bounds for 1-, 2- and 3-dimensional on-line bin packing algorithms , 2005, Computing.

[20]  Rob van Stee,et al.  Absolute approximation ratios for packing rectangles into bins , 2012, J. Sched..

[21]  Leah Epstein,et al.  Two Dimensional Packing: The Power of Rotation , 2003, MFCS.

[22]  Gábor Galambos A 1.6 Lower-Bound for the Two-Dimensional On-Line Rectangle Bin-Packing , 1991, Acta Cybern..

[23]  János Csirik,et al.  An on-line algorithm for multidimensional bin packing , 1993, Oper. Res. Lett..

[24]  Steven S. Seiden,et al.  On the online bin packing problem , 2001, JACM.

[25]  D. S. Johnson,et al.  On Packing Two-Dimensional Bins , 1982 .

[26]  D. T. Lee,et al.  A simple on-line bin-packing algorithm , 1985, JACM.

[27]  D. T. Lee,et al.  On-Line Bin Packing in Linear Time , 1989, J. Algorithms.

[28]  Rob van Stee,et al.  New bounds for multi-dimensional packing , 2002, SODA '02.

[29]  Yong Zhou,et al.  A note on online hypercube packing , 2010, Central Eur. J. Oper. Res..