On Combinatorial Model Categories

Combinatorial model categories were introduced by J. H. Smith as model categories which are locally presentable and cofibrantly generated. He has not published his results yet but proofs of some of them were presented by T. Beke, D. Dugger or J. Lurie. We are contributing to this endeavour by some new results about homotopy equivalences, weak equivalences and cofibrations in combinatorial model categories.

[1]  Denis-Charles Cisinski,et al.  Les Pr'efaisceaux comme mod`eles des types d''homotopie , 2002 .

[2]  Jeffrey H. Smith,et al.  Implications of large-cardinal principles in homotopical localization , 2005 .

[3]  Javier J. Guti'errez,et al.  Are all localizing subcategories of stable homotopy categories coreflective , 2011, 1106.2218.

[4]  On preaccessible categories , 1995 .

[5]  Jiří Adámek,et al.  Pure morphisms in pro-categories , 2006 .

[6]  Combinatorial Model Categories Have Presentations , 2000, math/0007068.

[7]  Tibor Beke,et al.  Sheafifiable homotopy model categories , 2000, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  Philip S. Hirschhorn Model categories and their localizations , 2003 .

[9]  Denis-Charles Cisinski,et al.  Théories homotopiques dans les topos , 2002 .

[10]  Georges Maltsiniotis,et al.  La théorie de l'homotopie de grothendieck , 2005 .

[11]  W. Dwyer,et al.  Homotopy theory of small diagrams over large categories , 2006, math/0607117.

[12]  J. Lurie Higher Topos Theory , 2006, math/0608040.

[13]  E. M. Brown,et al.  Generalized Brown Representability in Homotopy Categories , 2005 .

[14]  J. Christensen,et al.  Quillen model structures for relative homological algebra , 2000, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  J. Adámek,et al.  Locally Presentable and Accessible Categories: Bibliography , 1994 .

[16]  Jirí Rosický More on directed colimits of models , 1994, Appl. Categorical Struct..

[17]  A. Grothendieck,et al.  Théorie des Topos et Cohomologie Etale des Schémas , 1972 .

[18]  Jirí Adámek,et al.  Weak Factorization Systems and Topological Functors , 2002, Appl. Categorical Struct..

[19]  Alexander Kurz,et al.  Weak Factorizations, Fractions and Homotopies , 2005, Appl. Categorical Struct..

[20]  W. Tholen,et al.  Left-determined model categories and universal homotopy theories , 2003 .

[21]  P. Gabriel,et al.  Lokal α-präsentierbare Kategorien , 1971 .

[22]  Isomorphisms in pro-categories , 2004, math/0404399.

[23]  J. Rosický,et al.  A convenient category for directed homotopy. , 2007, 0708.3937.

[24]  Horst Herrlich,et al.  On a generalized small-object argument for the injective subcategory problem , 2002 .

[25]  Walter Tholen,et al.  Factorization, Fibration and Torsion , 2007, 0801.0063.

[26]  Michael Makkai,et al.  Accessible categories: The foundations of categorical model theory, , 2007 .