LP decoding corrects a constant fraction of errors

We show that for low-density parity-check (LDPC) codes with sufficient expansion, the linear programming (LP) decoder corrects a constant fraction of errors.

[1]  Brendan J. Frey,et al.  Signal-space characterization of iterative decoding , 2001, IEEE Trans. Inf. Theory.

[2]  Jon Feldman,et al.  Decoding error-correcting codes via linear programming , 2003 .

[3]  Jon Feldman,et al.  LP decoding achieves capacity , 2005, SODA '05.

[4]  Martin J. Wainwright,et al.  MAP estimation via agreement on trees: message-passing and linear programming , 2005, IEEE Transactions on Information Theory.

[5]  Ron M. Roth,et al.  On nearly-MDS expander codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[6]  Michael Lentmaier,et al.  An analysis of the block error probability performance of iterative decoding , 2005, IEEE Transactions on Information Theory.

[7]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[8]  Gilles Zémor,et al.  On expander codes , 2001, IEEE Trans. Inf. Theory.

[9]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[10]  Alexander Barg,et al.  Error exponents of expander codes , 2002, IEEE Trans. Inf. Theory.

[11]  Venkatesan Guruswami,et al.  Near-optimal linear-time codes for unique decoding and new list-decodable codes over smaller alphabets , 2002, STOC '02.

[12]  Niclas Wiberg,et al.  Codes and Decoding on General Graphs , 1996 .

[13]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[14]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[15]  D. Spielman,et al.  Expander codes , 1996 .

[16]  David Burshtein,et al.  Expander graph arguments for message-passing algorithms , 2001, IEEE Trans. Inf. Theory.

[17]  R. Koetter,et al.  On the Effective Weights of Pseudocodewords for Codes Defined on Graphs with Cycles , 2001 .

[18]  Venkatesan Guruswami,et al.  Expander-based constructions of efficiently decodable codes , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[19]  Avi Wigderson,et al.  Randomness conductors and constant-degree lossless expanders , 2002, STOC '02.

[20]  Venkatesan Guruswami,et al.  Efficiently decodable codes meeting Gilbert-Varshamov bound for low rates , 2004, SODA '04.

[21]  M. Wainwright,et al.  Using Linear Programming to Decode Linear Codes , 2003 .

[22]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[23]  M. Luby,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[24]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[25]  Jon Feldman,et al.  Decoding turbo-like codes via linear programming , 2004, J. Comput. Syst. Sci..

[26]  Avi Wigderson,et al.  Entropy waves, the zig-zag graph product, and new constant-degree expanders and extractors , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[27]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[28]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[29]  Guy Even,et al.  Improved bounds on the word error probability of RA(2) codes with linear-programming-based decoding , 2005, IEEE Transactions on Information Theory.

[30]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .