Monotonic Regression Based on Bayesian P-Splines: An Application to Estimating Price Response Functions from Store-Level Scanner Data

Generalized additive models have become a widely used instrument for flexible regression analysis. In many practical situations, however, it is desirable to restrict the flexibility of nonparametric estimation in order to accommodate a presumed monotonic relationship between a covariate and the response variable. For example, consumers usually will buy less of a brand if its price increases, and therefore one expects a brand's unit sales to be a decreasing function in own price. We follow a Bayesian approach using penalized B-splines and incorporate the assumption of monotonicity in a natural way by an appropriate specification of the respective prior distributions. We illustrate the methodology in an empirical application modeling demand for a brand of orange juice and show that imposing monotonicity constraints for own- and cross-item price effects improves the predictive validity of the estimated sales response function considerably.

[1]  Robert C. Blattberg,et al.  How Promotions Work , 1995 .

[2]  R. Tibshirani,et al.  Bayesian Backfitting , 1998 .

[3]  G Salanti,et al.  Estimation of the general threshold limit values for dust , 2003, International archives of occupational and environmental health.

[4]  V. Rao Pricing Models in Marketing , 1993 .

[5]  Albert C. Bemmaor,et al.  Measuring the Short-Term Effect of In-Store Promotion and Retail Advertising on Brand Sales: A Factorial Experiment , 1991 .

[6]  Charles Kooperberg,et al.  Spline Adaptation in Extended Linear Models (with comments and a rejoinder by the authors , 2002 .

[7]  A. Montgomery Creating Micro-Marketing Pricing Strategies Using Supermarket Scanner Data , 1997 .

[8]  K. Sivakumar,et al.  Quality Tier Competition: How Price Change Influences Brand Choice and Category Choice , 1997 .

[9]  T. Kneib,et al.  BayesX: Analyzing Bayesian Structural Additive Regression Models , 2005 .

[10]  Andreas Brezger,et al.  Generalized structured additive regression based on Bayesian P-splines , 2006, Comput. Stat. Data Anal..

[11]  Dick R. Wittink,et al.  Varying parameter models to accommodate dynamic promotion effects , 1998 .

[12]  M. Hansen,et al.  Spline Adaptation in Extended Linear Models , 1998 .

[13]  BayesX: Analysing Bayesian semiparametric regression models , 2002 .

[14]  R. Brodie,et al.  Building models for marketing decisions , 2000 .

[15]  Trevor Hastie,et al.  Polynomial splines and their tensor products in extended linear modeling. Discussion and rejoinder , 1997 .

[16]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[17]  Harald J. van Heerde,et al.  How Promotions Work: Scan Pro-Based Evolutionary Model Building , 2002 .

[18]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[19]  Lee G. Cooper,et al.  The Discounting of Discounts and Promotion Thresholds , 1992 .

[20]  J. Friedman,et al.  FLEXIBLE PARSIMONIOUS SMOOTHING AND ADDITIVE MODELING , 1989 .

[21]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[22]  George L. Nemhauser,et al.  Handbooks in operations research and management science , 1989 .

[23]  D. Madigan,et al.  Correction to: ``Bayesian model averaging: a tutorial'' [Statist. Sci. 14 (1999), no. 4, 382--417; MR 2001a:62033] , 2000 .

[24]  C. Robert Simulation of truncated normal variables , 2009, 0907.4010.

[25]  R. Kohn,et al.  Nonparametric regression using Bayesian variable selection , 1996 .

[26]  Jerome H. Friedman Multivariate adaptive regression splines (with discussion) , 1991 .

[27]  J. Ramsay Monotone Regression Splines in Action , 1988 .

[28]  Robert C. Blattberg,et al.  Shrinkage Estimation of Price and Promotional Elasticities: Seemingly Unrelated Equations , 1991 .

[29]  H. Rue Fast Sampling of Gaussian Markov Random Fields with Applications , 2000 .

[30]  J. Ramsay Estimating smooth monotone functions , 1998 .

[31]  G. Wahba Improper Priors, Spline Smoothing and the Problem of Guarding Against Model Errors in Regression , 1978 .

[32]  Kirthi Kalyanam,et al.  Estimating Irregular Pricing Effects: A Stochastic Spline Regression Approach , 1998 .

[33]  D. Dey,et al.  Bayesian analysis for correlated Ordinal Data Models , 2000 .

[34]  K. Nolte,et al.  Methodological issues in the surveillance of poisoning, illicit drug overdose, and heroin overdose deaths in new Mexico. , 2003, American journal of epidemiology.

[35]  R. Tibshirani,et al.  Bayesian backfitting (with comments and a rejoinder by the authors , 2000 .

[36]  C. Holmes,et al.  Generalized monotonic regression using random change points , 2003, Statistics in medicine.

[37]  G. Tellis The Price Elasticity of Selective Demand: A Meta-Analysis of Econometric Models of Sales , 1988 .

[38]  Robert C. Blattberg,et al.  Price-Induced Patterns of Competition , 1989 .

[39]  C. Biller Adaptive Bayesian Regression Splines in Semiparametric Generalized Linear Models , 2000 .

[40]  Paul H. C. Eilers,et al.  Flexible smoothing with B-splines and penalties , 1996 .

[41]  Carl F. Mela,et al.  The Dynamic Effect of Discounting on Sales: Empirical Analysis and Normative Pricing Implications , 1999 .

[42]  S. Lang,et al.  Bayesian P-Splines , 2004 .

[43]  Robert Fildes,et al.  The price elasticity of selective demand: A meta-analysis of econometric models of sales: Gerald J. Tellis, Journal of marketing research 25 (1988) 331-341 , 1990 .

[44]  Dani Gamerman,et al.  Sampling from the posterior distribution in generalized linear mixed models , 1997, Stat. Comput..

[45]  Young K. Truong,et al.  Polynomial splines and their tensor products in extended linearmodeling , 1997 .

[46]  Harald J. van Heerde,et al.  Semiparametric Analysis to Estimate the Deal Effect Curve , 2001 .

[47]  R. Kass,et al.  Bayesian curve-fitting with free-knot splines , 2001 .

[48]  Robert C. Blattberg,et al.  Sales Promotion: Concepts, Methods, and Strategies , 1990 .

[49]  Christie H. Paksoy,et al.  Assessing the Impact of Short-Term Supermarket Strategy Variables , 1982 .

[50]  Peter E. Rossi,et al.  Quality perceptions and asymmetric switching between brands , 1991 .

[51]  Ludwig Fahrmeir,et al.  Bayesian varying-coefficient models using adaptive regression splines , 2001 .

[52]  L. Fahrmeir,et al.  Bayesian Semiparametric Regression Analysis of Multicategorical Time-Space Data , 2001 .

[53]  Dominique M. Hanssens,et al.  Market Response Models: Econometric and Time Series Analysis , 1989 .

[54]  H. Rue Fast sampling of Gaussian Markov random fields , 2000 .

[55]  Brian Neelon,et al.  Bayesian Inference on Order‐Constrained Parameters in Generalized Linear Models , 2003, Biometrics.

[56]  V. Srinivasan,et al.  Asymmetric and Neighborhood Cross-Price Effects: Some Empirical Generalizations , 1999 .

[57]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[58]  Robert P. Leone,et al.  Implicit Price Bundling of Retail Products: A Multiproduct Approach to Maximizing Store Profitability , 1991 .

[59]  Paul H. C. Eilers,et al.  Direct generalized additive modeling with penalized likelihood , 1998 .

[60]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[61]  James O. Berger,et al.  Objective Bayesian Methods for Model Selection: Introduction and Comparison , 2001 .

[62]  L. Fahrmeir,et al.  Bayesian inference for generalized additive mixed models based on Markov random field priors , 2001 .

[63]  Adrian F. M. Smith,et al.  Automatic Bayesian curve fitting , 1998 .

[64]  Greg M. Allenby,et al.  Incorporating Prior Knowledge into the Analysis of Conjoint Studies , 1995 .

[65]  L. Fahrmeir,et al.  Multivariate statistical modelling based on generalized linear models , 1994 .

[66]  Eric R. Ziegel,et al.  Multivariate Statistical Modelling Based on Generalized Linear Models , 2002, Technometrics.

[67]  John Geweke,et al.  Efficient Simulation from the Multivariate Normal and Student-t Distributions Subject to Linear Constraints and the Evaluation of Constraint Probabilities , 1991 .

[68]  Young K. Truong,et al.  Polynomial splines and their tensor products in extended linear modeling: 1994 Wald memorial lecture , 1997 .

[69]  Jouko Lampinen,et al.  Expected utility estimation via cross-validation , 2003 .

[70]  Robert Kohn,et al.  A Bayesian approach to additive semiparametric regression , 1996 .

[71]  A. Goldberger The Interpretation and Estimation of Cobb-Douglas Functions , 1968 .