Syn-tectonic, meteoric water–derived carbonation of the New Caledonia peridotite nappe

Exceptional outcrops recently exposed in the Koniambo massif allow the study of the serpentine sole of the peridotite nappe of New Caledonia (southwest Pacific Ocean). Many magnesite veins are observed, with characteristics indicating that they were emplaced during pervasive top-to-the-southwest shear deformation. The oxygen isotope composition of magnesite is homogeneous (27.4‰ < δ18O < 29.7‰), while its carbon isotope composition varies widely (−16.7‰ < δ13C < −8.5‰). These new data document an origin of magnesite from meteoric fluids. Laterization on top of the peridotite nappe and carbonation along the sole appear to represent complementary records of meteoric water infiltration. Based on the syn-kinematic character of magnesite veins, we propose that syn-laterization tectonic activity has enhanced water infiltration, favoring the exportation of leached elements like Mg, which has led to widespread carbonation along the serpentine sole. This calls for renewed examination of other magnesite-bearing ophiolites worldwide in order to establish whether active tectonics is commonly a major agent for carbonation.

[1]  A. Robertson,et al.  Tectonic development of the Vardar ocean and its margins: Evidence from the Republic of Macedonia and Greek Macedonia , 2013 .

[2]  J. Bailey,et al.  Formation of weathering-derived magnesite deposits in the New England Orogen, New South Wales, Australia: Implications from mineralogy, geochemistry and genesis of the Attunga magnesite deposit , 2013, Mineralium Deposita.

[3]  M. Economou-Eliopoulos,et al.  Geochemical features of nickel-laterite deposits from the Balkan Peninsula and Gordes, Turkey: The genetic and environmental significance of arsenic , 2012 .

[4]  L. Palinkaš,et al.  Genesis of vein-stockwork cryptocrystalline magnesite from the Dinaride ophiolites , 2012 .

[5]  S. Meffre,et al.  The metamorphic sole of New Caledonia ophiolite: 40Ar/39Ar, U‐Pb, and geochemical evidence for subduction inception at a spreading ridge , 2012 .

[6]  P. Maurizot,et al.  First palaeomagnetic dating of ferricrete in New Caledonia: new insight on the morphogenesis and palaeoweathering of ‘Grande Terre’ , 2012 .

[7]  C. Garrido,et al.  Thermodynamic constraints on mineral carbonation of serpentinized peridotite , 2011 .

[8]  John Frederick Rudge,et al.  Rates and mechanisms of mineral carbonation in peridotite: natural processes and recipes for enhanced, in situ CO2 capture and storage , 2011 .

[9]  M. Ulrich Péridotites et serpentinites du complexe ophiolitique de la Nouvelle-Calédonie. , 2010 .

[10]  P. Grandcolas,et al.  New Caledonia: a very old Darwinian island? , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[11]  P. Deines,et al.  Theoretical calculation of oxygen isotope fractionation factors in carbonate systems , 2008 .

[12]  Dominique Cluzel,et al.  Syntectonic Mobility of Supergene Nickel Ores of New Caledonia (Southwest Pacific). Evidence from Garnierite Veins and Faulted Regolith , 2008 .

[13]  A. Chauvet,et al.  The role of extensional tectonics in shaping Cenozoic New-Caledonia , 2008 .

[14]  J. Paquette,et al.  U–Pb zircon dating of post-obduction volcanic-arc granitoids and a granulite-facies xenolith from New Caledonia. Inference on Southwest Pacific geodynamic models , 2007 .

[15]  F. Colin,et al.  Long-term tropical morphogenesis of New Caledonia (Southwest Pacific): Importance of positive epeirogeny and climate change , 2006 .

[16]  D. Chardon,et al.  Morphotectonic evolution of the New Caledonia ridge (Pacific Southwest) from post-obduction tectonosedimentary record , 2006 .

[17]  E. Gartzos COMPARATIVE STABLE ISOTOPES STUDY OF THE MAGNESITE DEPOSITS OF GREECE , 2004 .

[18]  S. Sharma,et al.  Temperature dependence of oxygen isotope fractionation of CO 2 from magnesite-phosphoric acid reaction , 2002 .

[19]  J. Aitchison,et al.  Tectonic accretion and underplating of mafic terranes in the Late Eocene intraoceanic fore-arc of New Caledonia (Southwest Pacific): geodynamic implications , 2001 .

[20]  Yong‐Fei Zheng Oxygen isotope fractionation in carbonate and sulfate minerals , 1999 .

[21]  Yong‐Fei Zheng Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates , 1993 .

[22]  M. Russell,et al.  A stable isotope study of the magnesite deposits associated with the alpine-type ultramafic rocks of Yugoslavia , 1991 .

[23]  S. Hałas,et al.  The origin of magnesite deposits from the Polish Foresudetic Block ophiolites: preliminary ?13C and ?18O investigations , 1990 .

[24]  M. Latham Altération et pédogénèse sur roches ultrabasiques en Nouvelle-Calédonie : Genèse et évolution des accumulations de fer et de silice en relation avec la formation du modèle , 1985 .

[25]  J. Byerlee Friction of rocks , 1978 .

[26]  H. Schoeller L'évolution géochimique supergéne des roches ultrabasiques en zone tropicale (Formation des gisements nickeliféres de nouvelle calédonie) , 1976 .

[27]  J. B. Rapp,et al.  Silica-Carbonate Alteration of Serpentine; Wall Rock Alteration in Mercury Deposits of the California Coast Ranges , 1973 .

[28]  J. Avias Overthrust structure of the main ultrabasic new caledonian massives , 1967 .

[29]  M. Glasser Rapport a M. le Ministre des Colonies sur les Richesses Minerales de la Nouvelle-Caledonie , 1905 .