Cilostazol restores autophagy flux in bafilomycin A1-treated, cultured cortical astrocytes through lysosomal reacidification: roles of PKA, zinc and metallothionein 3

[1]  J. Hwang,et al.  Lysosomal dysfunction in proteinopathic neurodegenerative disorders: possible therapeutic roles of cAMP and zinc , 2019, Molecular Brain.

[2]  Arieh Warshel,et al.  ZnT2 is an electroneutral proton-coupled vesicular antiporter displaying an apparent stoichiometry of two protons per zinc ion , 2019, PLoS Comput. Biol..

[3]  K. Taylor,et al.  B cell activation and proliferation increase intracellular zinc levels☆ , 2019, The Journal of nutritional biochemistry.

[4]  Takahiro Shimizu,et al.  The inhibitory role of intracellular free zinc in the regulation of Arg-1 expression in interleukin-4-induced activation of M2 microglia. , 2018, Metallomics : integrated biometal science.

[5]  Y. Higashi,et al.  Cilostazol for treatment of cerebral infarction , 2018, Expert opinion on pharmacotherapy.

[6]  Xingdong Zhou,et al.  Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion , 2018, Autophagy.

[7]  S. Shimizu,et al.  Association Between Autophagy and Neurodegenerative Diseases , 2018, Front. Neurosci..

[8]  Mark Ellisman,et al.  Elevated intracellular cAMP exacerbates vulnerability to oxidative stress in optic nerve head astrocytes , 2018, Cell Death & Disease.

[9]  A. Kulshrestha,et al.  The curious case of vacuolar ATPase: regulation of signaling pathways , 2018, Molecular Cancer.

[10]  M. Duchen,et al.  Crosstalk between Lysosomes and Mitochondria in Parkinson's Disease , 2017, Front. Cell Dev. Biol..

[11]  R. Dempski,et al.  The emerging role of zinc transporters in cellular homeostasis and cancer , 2017, Signal Transduction and Targeted Therapy.

[12]  P. Verstreken,et al.  Autophagy in the presynaptic compartment in health and disease , 2017, The Journal of cell biology.

[13]  R. Nixon Amyloid precursor protein and endosomal‐lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease , 2017, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[14]  J. Searcy,et al.  Long-term cilostazol treatment reduces gliovascular damage and memory impairment in a mouse model of chronic cerebral hypoperfusion , 2017, Scientific Reports.

[15]  T. Yoshimori,et al.  New insights into autophagosome–lysosome fusion , 2017, Journal of Cell Science.

[16]  J. Frydman,et al.  Protein misfolding in neurodegenerative diseases: implications and strategies , 2017, Translational Neurodegeneration.

[17]  S. P. Andrews,et al.  Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities , 2017, Neuron.

[18]  Hwangseo Park,et al.  The anti‐ALS drug riluzole attenuates pericyte loss in the diabetic retinopathy of streptozotocin‐treated mice , 2017, Toxicology and applied pharmacology.

[19]  R. Nixon,et al.  Disorders of lysosomal acidification—The emerging role of v-ATPase in aging and neurodegenerative disease , 2016, Ageing Research Reviews.

[20]  Sandra Maday Mechanisms of neuronal homeostasis: Autophagy in the axon , 2016, Brain Research.

[21]  Hye Rin Lee,et al.  Cilostazol Modulates Autophagic Degradation of β-Amyloid Peptide via SIRT1-Coupled LKB1/AMPKα Signaling in Neuronal Cells , 2016, PloS one.

[22]  M. Forgac,et al.  Regulation of V-ATPase assembly and function of V-ATPases in tumor cell invasiveness. , 2016, Biochimica et biophysica acta.

[23]  H. Hara,et al.  Protective effects of cilostazol against hemorrhagic stroke: Current and future perspectives. , 2016, Journal of pharmacological sciences.

[24]  J. Koh,et al.  Autism phenotypes in ZnT3 null mice: Involvement of zinc dyshomeostasis, MMP-9 activation and BDNF upregulation , 2016, Scientific Reports.

[25]  Su Yeon Shim,et al.  Prion infection impairs lysosomal degradation capacity by interfering with rab7 membrane attachment in neuronal cells , 2016, Scientific Reports.

[26]  J. Koh,et al.  The zinc ionophore clioquinol reverses autophagy arrest in chloroquine-treated ARPE-19 cells and in APP/mutant presenilin-1–transfected Chinese hamster ovary cells , 2015, Neurobiology of Aging.

[27]  Y. Wada,et al.  Role of vacuolar-type proton ATPase in signal transduction. , 2015, Biochimica et biophysica acta.

[28]  Ru-jing Ren,et al.  The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration , 2015, Translational Neurodegeneration.

[29]  R. Nixon,et al.  Presenilin 1 Maintains Lysosomal Ca(2+) Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification. , 2015, Cell reports.

[30]  D. Rubinsztein,et al.  Therapeutic targeting of autophagy in neurodegenerative and infectious diseases , 2015, The Journal of experimental medicine.

[31]  Yong Tae Kwon,et al.  Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies , 2015, Experimental & Molecular Medicine.

[32]  P. McLean,et al.  Extracellular ATP induces intracellular alpha-synuclein accumulation via P2X1 receptor-mediated lysosomal dysfunction , 2015, Neurobiology of Aging.

[33]  S. Grinstein,et al.  The vacuolar-type H+-ATPase at a glance – more than a proton pump , 2014, Journal of Cell Science.

[34]  A. Laties,et al.  Lysosomal alkalization and dysfunction in human fibroblasts with the Alzheimer’s disease-linked presenilin 1 A246E mutation can be reversed with cAMP , 2014, Neuroscience.

[35]  R. Nixon,et al.  Lysosome and calcium dysregulation in Alzheimer's disease: partners in crime. , 2013, Biochemical Society transactions.

[36]  H. Zhang,et al.  Suppression of Lysosome Function Induces Autophagy via a Feedback Down-regulation of MTOR Complex 1 (MTORC1) Activity* , 2013, The Journal of Biological Chemistry.

[37]  S. Oddo,et al.  Autophagic/lysosomal dysfunction in Alzheimer’s disease , 2013, Alzheimer's Research & Therapy.

[38]  Katarina Kågedal,et al.  The lysosome: from waste bag to potential therapeutic target. , 2013, Journal of molecular cell biology.

[39]  J. Koh,et al.  The neurosteroids, allopregnanolone and progesterone, induce autophagy in cultured astrocytes , 2012, Neurochemistry International.

[40]  Antonia Gutierrez,et al.  Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer’s mice hippocampus , 2011, Acta Neuropathologica.

[41]  Y. Yeh,et al.  Cilostazol Promotes Vascular Smooth Muscles Cell Differentiation Through the cAMP Response Element-Binding Protein-Dependent Pathway , 2011, Arteriosclerosis, thrombosis, and vascular biology.

[42]  K. Kitagawa,et al.  Cilostazol, Not Aspirin, Reduces Ischemic Brain Injury via Endothelial Protection in Spontaneously Hypertensive Rats , 2011, Stroke.

[43]  J. Kim,et al.  Protective effect of the phosphodiesterase III inhibitor cilostazol on amyloid β-induced cognitive deficits associated with decreased amyloid β accumulation. , 2011, Biochemical and biophysical research communications.

[44]  N. Chattipakorn,et al.  Effects of cilostazol in the heart , 2011, Journal of cardiovascular medicine.

[45]  M. Hiramatsu,et al.  Cilostazol prevents amyloid β peptide25‐35‐induced memory impairment and oxidative stress in mice , 2010, British journal of pharmacology.

[46]  J. Koh,et al.  Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes , 2010, Molecular Brain.

[47]  T. Wyss-Coray,et al.  Beclin 1 complex in autophagy and Alzheimer disease. , 2010, Archives of neurology.

[48]  J. Koh,et al.  Metallothionein‐3 regulates lysosomal function in cultured astrocytes under both normal and oxidative conditions , 2010, Glia.

[49]  D. Westaway,et al.  Lysosomal Proteolysis and Autophagy Require Presenilin 1 and Are Disrupted by Alzheimer-Related PS1 Mutations , 2010, Cell.

[50]  E. Masliah,et al.  Regulation of Amyloid Precursor Protein Processing by the Beclin 1 Complex , 2010, PloS one.

[51]  Jianhua Zhang,et al.  Lysosomal function in macromolecular homeostasis and bioenergetics in Parkinson's disease , 2010, Molecular Neurodegeneration.

[52]  Keiji Tanaka,et al.  The cellular pathways of neuronal autophagy and their implication in neurodegenerative diseases. , 2009, Biochimica et biophysica acta.

[53]  T. Iwama,et al.  Cilostazol protects against hemorrhagic transformation in mice transient focal cerebral ischemia-induced brain damage , 2009, Neuroscience Letters.

[54]  Brian Spencer,et al.  The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. , 2008, The Journal of clinical investigation.

[55]  C. Kim,et al.  Protective Effects of Cilostazol against Transient Focal Cerebral ischemia and Chronic Cerebral Hypoperfusion Injury , 2008, CNS neuroscience & therapeutics.

[56]  C. Chu,et al.  Autophagy in neuroprotection and neurodegeneration: A question of balance. , 2008, Future neurology.

[57]  D. Rubinsztein,et al.  Potential therapeutic applications of autophagy , 2007, Nature Reviews Drug Discovery.

[58]  R. Nixon Autophagy in neurodegenerative disease: friend, foe or turncoat? , 2006, Trends in Neurosciences.

[59]  Yongge Liu,et al.  Cilostazol (pletal): a dual inhibitor of cyclic nucleotide phosphodiesterase type 3 and adenosine uptake. , 2006, Cardiovascular drug reviews.

[60]  Ning Zhang,et al.  Cilostazol Protects Against Brain White Matter Damage and Cognitive Impairment in a Rat Model of Chronic Cerebral Hypoperfusion , 2006, Stroke.

[61]  R. Schmidt,et al.  cAMP regulates plasma membrane vacuolar-type H+-ATPase assembly and activity in blowfly salivary glands. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[62]  J. Hwang,et al.  Activation of the Trk Signaling Pathway by Extracellular Zinc , 2005, Journal of Biological Chemistry.

[63]  Ralph A. Nixon,et al.  Extensive Involvement of Autophagy in Alzheimer Disease: An Immuno-Electron Microscopy Study , 2005, Journal of neuropathology and experimental neurology.

[64]  C. Ross,et al.  Protein aggregation and neurodegenerative disease , 2004, Nature Medicine.

[65]  N. Tandon,et al.  Comparison of the effects of cilostazol and milrinone on intracellular cAMP levels and cellular function in platelets and cardiac cells. , 1999, Journal of cardiovascular pharmacology.

[66]  D. Dawson,et al.  Cilostazol has beneficial effects in treatment of intermittent claudication: results from a multicenter, randomized, prospective, double-blind trial. , 1998, Circulation.

[67]  U. Ikeda,et al.  Effect of cilostazol, a cAMP phosphodiesterase inhibitor, on nitric oxide production by vascular smooth muscle cells. , 1996, European journal of pharmacology.

[68]  D. Medina,et al.  TRPML1: The Ca(2+)retaker of the lysosome. , 2018, Cell calcium.