Modelling of the microstructure of mesoporous alumina constrained by morphological simulation of nitrogen porosimetry

[1]  D. Jeulin,et al.  Numerical Simulation of Hindered Diffusion in γ-Alumina Catalyst Supports , 2017 .

[2]  D. Jeulin,et al.  Modelling mesoporous alumina microstructure with 3D random models of platelets , 2015, Journal of microscopy.

[3]  Maxime Moreaud,et al.  Inverse Problem Approach for the Alignment of Electron Tomographic Series , 2014 .

[4]  K. Cychosz,et al.  Experimental and theoretical studies of scanning adsorption–desorption isotherms , 2013 .

[5]  Lorenz Holzer,et al.  Contradicting Geometrical Concepts in Pore Size Analysis Attained with Electron Microscopy and Mercury Intrusion , 2008 .

[6]  Renaud Revel,et al.  Accurate Determination of Oxide Nanoparticle Size and Shape Based on X-Ray Powder Pattern Simulation : Application to Boehmite AlOOH , 2008 .

[7]  Miroslav Soos,et al.  Characterisation of porous media by the virtual capillary condensation method , 2007 .

[8]  P. A. Monson,et al.  Adsorption/desorption hysteresis in inkbottle pores: a density functional theory and Monte Carlo simulation study. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[9]  C. Maurer,et al.  A Linear Time Algorithm for Computing Exact Euclidean Distance Transforms of Binary Images in Arbitrary Dimensions , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  G. Tarjus,et al.  Capillary condensation in disordered porous materials: hysteresis versus equilibrium behavior. , 2001, Physical review letters.

[11]  A. Neimark,et al.  Adsorption hysteresis in nanopores , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  T. Kanazawa,et al.  Validity of the Kelvin equation in estimation of small pore size by nitrogen adsorption , 1997 .

[13]  D. Bentz,et al.  Hydraulic radius and transport in reconstructed model three-dimensional porous media , 1994 .

[14]  N. Seaton,et al.  Determination of the connectivity of porous solids from nitrogen sorption measurements—III. Solids containing large mesopores , 1994 .

[15]  Pierre M. Adler,et al.  Computerized characterization of the geometry of real porous media: their discretization, analysis and interpretation , 1993 .

[16]  J. Boer,et al.  Studies on pore systems in catalysts: IX. Calculation of pore distributions from the adsorption branch of nitrogen sorption isotherms in the case of open cylindrical pores A. Fundamental equations , 1967 .

[17]  J. Boer,et al.  Studies on pore systems in catalysts I. The adsorption of nitrogen; apparatus and calculation , 1964 .

[18]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[19]  Leonard H. Cohan,et al.  Sorption Hysteresis and the Vapor Pressure of Concave Surfaces , 1938 .

[20]  J. Serra Image Analysis and Mathematical Morphology , 1983 .

[21]  G. Matheron Éléments pour une théorie des milieux poreux , 1967 .

[22]  E. Barrett,et al.  (CONTRIBUTION FROM THE MULTIPLE FELLOWSHIP OF BAUGH AND SONS COMPANY, MELLOX INSTITUTE) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms , 1951 .

[23]  R. Pierotti,et al.  International Union of Pure and Applied Chemistry Physical Chemistry Division Commission on Colloid and Surface Chemistry including Catalysis* Reporting Physisorption Data for Gas/solid Systems with Special Reference to the Determination of Surface Area and Porosity Reporting Physisorption Data for , 2022 .