Interface‐Engineered Amorphous TiO2‐Based Resistive Memory Devices

Crossbar‐type bipolar resistive memory devices based on low‐temperature amorphous TiO2 (a‐TiO2) thin films are very promising devices for flexible nonvolatile memory applications. However, stable bipolar resistive switching from amorphous TiO2 thin films has only been achieved for Al metal electrodes that can have severe problems like electromigration and breakdown in real applications and can be a limiting factor for novel applications like transparent electronics. Here, amorphous TiO2‐based resistive random access memory devices are presented that universally work for any configuration of metal electrodes via engineering the top and bottom interface domains. Both by inserting an ultrathin metal layer in the top interface region and by incorporating a thin blocking layer in the bottom interface, more enhanced resistance switching and superior endurance performance can be realized. Using high‐resolution transmission electron microscopy, point energy dispersive spectroscopy, and energy‐filtering transmission electron microscopy, it is demonstrated that the stable bipolar resistive switching in metal/a‐TiO2/metal RRAM devices is attributed to both interface domains: the top interface domain with mobile oxygen ions and the bottom interface domain for its protection against an electrical breakdown.

[1]  Sung-Yool Choi,et al.  A low-temperature-grown TiO2-based device for the flexible stacked RRAM application , 2010, Nanotechnology.

[2]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[3]  Min-Ki Ryu,et al.  Bipolar resistive switching in amorphous titanium oxide thin film , 2009, 0908.3525.

[4]  Dae-Geun Choi,et al.  Mass fabrication of resistive random access crossbar arrays by step and flash imprint lithography , 2009, Nanotechnology.

[5]  Hyunsang Hwang,et al.  Resistive-Switching Characteristics of $\hbox{Al}/ \hbox{Pr}_{0.7}\hbox{Ca}_{0.3}\hbox{MnO}_{3}$ for Nonvolatile Memory Applications , 2009, IEEE Electron Device Letters.

[6]  H. Hwang,et al.  The impact of Al interfacial layer on resistive switching of La0.7Sr0.3MnO3 for reliable ReRAM applications , 2009 .

[7]  C. N. Lau,et al.  The mechanism of electroforming of metal oxide memristive switches , 2009, Nanotechnology.

[8]  Young-soo Park,et al.  Low‐Temperature‐Grown Transition Metal Oxide Based Storage Materials and Oxide Transistors for High‐Density Non‐volatile Memory , 2009 .

[9]  H. Jeong,et al.  Microscopic origin of bipolar resistive switching of nanoscale titanium oxide thin films , 2009, 0904.3628.

[10]  Hyunjung Shin,et al.  Resistive switching memory devices composed of binary transition metal oxides using sol-gel chemistry. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[11]  F. Zeng,et al.  Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. , 2009, Nano letters.

[12]  J. Gang,et al.  Resistive switching properties and low resistance state relaxation in Al/Pr0.7Ca0.3MnO3/Pt junctions , 2009 .

[13]  Dashan Shang,et al.  Resistive switching properties in oxygen-deficient Pr0.7Ca0.3MnO3 junctions with active Al top electrodes , 2009 .

[14]  M. Gomi,et al.  Enhancement of Switching Capability on Bipolar Resistance Switching Device with Ta/Pr0.7Ca0.3MnO3/Pt Structure , 2008 .

[15]  I. Yoo,et al.  Effects of metal electrodes on the resistive memory switching property of NiO thin films , 2008 .

[16]  Li Xu,et al.  Reverse-bias-induced bipolar resistance switching in Pt∕TiO2∕SrTi0.99Nb0.01O3∕Pt devices , 2008 .

[17]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[18]  Sungho Kim,et al.  Structure Effects on Resistive Switching of $ \hbox{Al/TiO}_{x}/\hbox{Al}$ Devices for RRAM Applications , 2008, IEEE Electron Device Letters.

[19]  Byung Joon Choi,et al.  Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films , 2007 .

[20]  James A. Bain,et al.  Electrode influence on the transport through SrRuO3∕Cr-doped SrZrO3/metal junctions , 2007 .

[21]  C. Hu,et al.  Effect of Top Electrode Material on Resistive Switching Properties of $\hbox{ZrO}_{2}$ Film Memory Devices , 2007, IEEE Electron Device Letters.

[22]  J. Jameson,et al.  Bipolar resistive switching in polycrystalline TiO2 films , 2007 .

[23]  M. Fujimoto,et al.  TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching , 2006 .

[24]  Rainer Waser,et al.  Impedance spectroscopy of TiO2 thin films showing resistive switching , 2006 .

[25]  Tetsu Fujii,et al.  Colossal electroresistance effect at metal electrode/La1−xSr1+xMnO4 interfaces , 2006 .

[26]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[27]  M. Rozenberg,et al.  Nonvolatile memory with multilevel switching: a basic model. , 2004, Physical review letters.