Theoretical study of differential enthalpy of absorption of CO2 with MEA and MDEA as a function of temperature.

Temperature dependent correlations for enthalpy of deprotonation, carbamate formation, and heat of absorption of the overall reaction between aqueous MEA and MDEA and gaseous CO2 are calculated on the basis of computational chemistry based ln K values input to the Gibbs-Helmholtz equation. Temperature dependency of reaction equilibrium constants for deprotonation and carbamate formation reactions is calculated with the SM8T continuum solvation model coupled with density functional theoretical calculations at the B3LYP/6-311++G(d,p) level of theory. Calculated reaction equilibrium constants and enthalpies of individual reactions and overall heat of absorption are compared against experimental data in the temperature range 273.15-373 K. Temperature dependent correlations for different reaction equilibrium constants and enthalpies of reactions are given. These correlated results can be used in thermodynamic models such as UNIQUAC and NRTL for better understanding of post-combustion CO2 capture solvent chemistry.

[1]  Gary T. Rochelle,et al.  Rate-Based Process Modeling Study of CO2 Capture with Aqueous Monoethanolamine Solution , 2009 .

[2]  R. M. Izatt,et al.  Enthalpies of absorption of hydrogen sulfide in aqueous methyldiethanolamine solutions , 1989 .

[3]  John Newman,et al.  Vapor‐liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes , 1978 .

[4]  H. Svendsen,et al.  Modeling temperature dependency of amine basicity using PCM and SM8T implicit solvation models. , 2012, The journal of physical chemistry. B.

[5]  Chau‐Chyun Chen,et al.  THERMODYNAMIC MODELING OF CO2 SOLUBILITY IN AQUEOUS SOLUTIONS OF NACL AND NA2SO4 , 2010 .

[6]  G. Sartori,et al.  Sterically hindered amines for carbon dioxide removal from gases , 1983 .

[7]  N. A. Sörensen,et al.  Studies on Carbamates. X. The Carbamates of Di-n-Propylamine and Di-iso-Propylamine. , 1954 .

[8]  A. E. Mather,et al.  Use of the NRTL equation for simultaneous correlation of vapour-liquid equilibria and excess enthalpy , 2007 .

[9]  Gary T. Rochelle,et al.  Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems using the electrolyte-NRTL equation , 1989 .

[10]  R. M. Izatt,et al.  Enthalpies of absorption of carbon dioxide in aqueous methyldiethanolamine solutions , 1987 .

[11]  A. E. Mather,et al.  Solubility of carbon dioxide and hydrogen sulfide in aqueous alkanolamines , 1993 .

[12]  Gary T. Rochelle,et al.  Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems. 2. Representation of H2S and CO2 solubility in aqueous MDEA and CO2 solubility in aqueous mixtures of MDEA with MEA or DEA , 1991 .

[13]  N. A. Sörensen,et al.  Reactions between Carbon Dioxide and Amino Alcohols. I. Menoethanolamine and Diethanolamine. , 1954 .

[14]  K. Schwabe,et al.  Physikalisch-chemische Untersuchungen an Alkanolaminen , 1959 .

[15]  R. Bates,et al.  Acidic dissociation constant and related thermodynamic quantities for monoethanolammonium ion in water from 0-degrees to 50-degrees-C , 1951 .

[16]  E. S. Hamborg,et al.  Dissociation Constants and Thermodynamic Properties of Amines and Alkanolamines from (293 to 353) K , 2009 .

[17]  M. Haji-Sulaiman,et al.  Equilibrium Constant For Carbamate Formation From Monoethanolamine and Its Relationship With Temperature , 1999 .

[18]  H. Kierzkowska‐Pawlak Enthalpies of Absorption and Solubility of CO2 in Aqueous Solutions of Methyldiethanolamine , 2007 .

[19]  M. Bos,et al.  Dissociation constants of some alkanolamines at 293, 303, 318, and 333 K , 1990 .

[20]  Donald G. Truhlar,et al.  Extension of a temperature-dependent aqueous solvation model to compounds containing nitrogen, fluorine, chlorine, bromine, and sulfur. , 2008, The journal of physical chemistry. B.

[21]  R. M. Izatt,et al.  Thermodynamics of protonation of alkanolamines in aqueous solution to 325° C , 1989 .

[22]  Alan E. Mather,et al.  Use of Flow Calorimetry for Determining Enthalpies of Absorption and the Solubility of CO2 in Aqueous Monoethanolamine Solutions , 1998 .

[23]  M. Maeder,et al.  A calorimetric study of carbamate formation , 2011 .

[24]  J. Carson,et al.  Enthalpy of solution of carbon dioxide in (water + monoethanolamine, or diethanolamine, orN-methyldiethanolamine) and (water + monoethanolamine + N-methyldiethanolamine) atT = 298.15 K , 2000 .

[25]  Alan E. Mather,et al.  A mathematical model for equilibrium solubility of hydrogen sulfide and carbon dioxide in aqueous alkanolamine solutions , 1981 .

[26]  J. Coxam,et al.  Enthalpy of Solution of Carbon Dioxide in Aqueous Solutions of Monoethanolamine at Temperatures of 322.5 K and 372.9 K and Pressures up to 5 MPa , 2011 .

[27]  Sung Hyun Kim,et al.  Correlation and Prediction of the Solubility of Carbon Dioxide in Aqueous Alkanolamine and Mixed Alkanolamine Solutions , 2002 .

[28]  Hallvard F. Svendsen,et al.  Comparative study of the heats of absorption of post-combustion CO2 absorbents , 2011 .

[29]  L. Hepler,et al.  Thermodynamics of ionization of aqueous alkanolamines , 1987 .

[30]  G. Kuranov,et al.  Solubility of Single Gases Carbon Dioxide and Hydrogen Sulfide in Aqueous Solutions of N-Methyldiethanolamine at Temperatures from 313 to 393 K and Pressures up to 7.6 MPa: New Experimental Data and Model Extension , 2001 .

[31]  H. Svendsen,et al.  Thermodynamics of protonation of amines in aqueous solutions at elevated temperatures , 2011 .

[32]  G. Maurer,et al.  Dissociation Constant of N-Methyldiethanolamine in Aqueous Solution at Temperatures from 278 K to 368 K , 1996 .

[33]  Michael Maiwald,et al.  Online NMR spectroscopic study of species distribution in MEA-H2O-CO2 and DEA-H2O-CO2 , 2008 .

[34]  Inna Kim Heat of reaction and VLE of post combustion CO2 absorbents , 2009 .

[35]  G. Rochelle,et al.  Thermodynamics of alkanolamine-water solutions from freezing point measurements , 1993 .

[36]  Hallvard F. Svendsen,et al.  Heat of Absorption of Carbon Dioxide (CO2) in Monoethanolamine (MEA) and 2-(Aminoethyl)ethanolamine (AEEA) Solutions , 2007 .

[37]  I. Wadsö,et al.  Heats of Ionization of Some Alkylammonium and Hydroxyalkylammonium Compounds. , 1968 .

[38]  Hallvard F. Svendsen,et al.  Liquid-Phase Composition Determination in CO2−H2O−Alkanolamine Systems: An NMR Study , 2005 .

[39]  E. S. Hamborg,et al.  Dissociation constants and thermodynamic properties of amino acids used in CO2 absorption from (293 to 353) K , 2007 .

[40]  Alan E. Mather,et al.  Vapor-liquid equilibrium of carbon dioxide in aqueous mixtures of monoethanolamine and methyldiethanolamine , 1994 .

[41]  W. Fernelius,et al.  A Thermodynamic Study of some Coordination Compounds of Metal Ions with Amines Containing Oxygen , 1959 .

[42]  Gary T. Rochelle,et al.  Innovative Absorber/Stripper Configurations for CO2 Capture by Aqueous Monoethanolamine , 2006 .

[43]  E. A. Guggenheim Thermodynamics of an activated complex , 1937 .

[44]  N. F. Hall,et al.  RELATIONS BETWEEN THE STRUCTURE AND STRENGTH OF CERTAIN ORGANIC BASES IN AQUEOUS SOLUTION , 1932 .

[45]  Gary T. Rochelle,et al.  Energy performance of stripper configurations for CO2 capture by aqueous amines , 2006 .

[46]  M. Maeder,et al.  A systematic investigation of carbamate stability constants by 1H NMR , 2011 .

[47]  L. Hepler Correct calculation of ΔH°, ΔC°P, and ΔV° from temperature and pressure dependences of equilibrium constants: The importance of thermal expansion and compressibility of the solvent , 1981 .

[48]  Geert Versteeg,et al.  ON THE KINETICS BETWEEN CO2 AND ALKANOLAMINES BOTH IN AQUEOUS AND NON-AQUEOUS SOLUTIONS. AN OVERVIEW , 1996 .

[49]  A. E. Mather,et al.  Enthalpies of absorption and solubility of CO2 in aqueous solutions of methyldiethanolamine , 1997 .

[50]  G. Versteeg,et al.  On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions—I. Primary and secondary amines , 1988 .

[51]  T. L. Donaldson,et al.  Carbon Dioxide Reaction Kinetics and Transport in Aqueous Amine Membranes , 1980 .

[52]  M. Maeder,et al.  Investigations of primary and secondary amine carbamate stability by 1H NMR spectroscopy for post combustion capture of carbon dioxide , 2012 .