Measuring firm performance using nonparametric quantile-type distances

ABSTRACT When faced with multiple inputs and outputs , traditional quantile regression of Y conditional on X = x for measuring economic efficiency in the output (input) direction is thwarted by the absence of a natural ordering of Euclidean space for dimensions q (p) greater than one. Daouia and Simar (2007) used nonstandard conditional quantiles to address this problem, conditioning on Y ≥ y (X ≤ x) in the output (input) orientation, but the resulting quantiles depend on the a priori chosen direction. This article uses a dimensionless transformation of the (p + q)-dimensional production process to develop an alternative formulation of distance from a realization of (X, Y) to the efficient support boundary, motivating a new, unconditional quantile frontier lying inside the joint support of (X, Y), but near the full, efficient frontier. The interpretation is analogous to univariate quantiles and corrects some of the disappointing properties of the conditional quantile-based approach. By contrast with the latter, our approach determines a unique partial-quantile frontier independent of the chosen orientation (input, output, hyperbolic, or directional distance). We prove that both the resulting efficiency score and its estimator share desirable monotonicity properties. Simple arguments from extreme-value theory are used to derive the asymptotic distributional properties of the corresponding empirical efficiency scores (both full and partial). The usefulness of the quantile-type estimator is shown from an infinitesimal and global robustness theory viewpoints via a comparison with the previous conditional quantile-based approach. A diagnostic tool is developed to find the appropriate quantile-order; in the literature to date, this trimming order has been fixed a priori. The methodology is used to analyze the performance of U.S. credit unions, where outliers are likely to affect traditional approaches.

[1]  Léopold Simar,et al.  Detecting Outliers in Frontier Models: A Simple Approach , 2003 .

[2]  Timothy Coelli,et al.  U.S. Financial Services Consolidation: The Case of Corporate Credit Unions , 2001 .

[3]  C. A. Knox Lovell,et al.  The impact of mergers on credit union service provision , 1999 .

[4]  I. Gijbels,et al.  Estimation of a Support Curve via Order Statistics , 2000 .

[5]  P. W. Wilson Detecting Outliers in Deterministic Nonparametric Frontier Models with Multiple Outputs , 1993 .

[6]  M. Farrell The Measurement of Productive Efficiency , 1957 .

[7]  P. Rousseeuw A new infinitesimal approach to robust estimation , 1981 .

[8]  P. W. Wilson,et al.  Estimation and Inference in Nonparametric Frontier Models: Recent Developments and Perspectives , 2013 .

[9]  A. U.S.,et al.  FORMULATION AND ESTIMATION OF STOCHASTIC FRONTIER PRODUCTION FUNCTION MODELS , 2001 .

[10]  G. Battese,et al.  ESTIMATION OF A PRODUCTION FRONTIER MODEL: WITH APPLICATION TO THE PASTORAL ZONE OF EASTERN AUSTRALIA , 1977 .

[11]  W. Meeusen,et al.  Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error , 1977 .

[12]  L. Simar,et al.  Robust nonparametric estimators of monotone boundaries , 2005 .

[13]  William W. Cooper,et al.  Evaluating Program and Managerial Efficiency: An Application of Data Envelopment Analysis to Program Follow Through , 1981 .

[14]  S. Girard,et al.  On kernel smoothing for extremal quantile regression , 2012, 1312.5123.

[15]  Léopold Simar,et al.  Probabilistic characterization of directional distances and their robust versions , 2012 .

[16]  A. V. D. Vaart,et al.  Asymptotic Statistics: Frontmatter , 1998 .

[17]  R. Stevenson Likelihood functions for generalized stochastic frontier estimation , 1980 .

[18]  Paul W. Wilson,et al.  The Evolution of Cost-Productivity and Efficiency Among U.S. Credit Unions , 2010 .

[19]  Byeoung-Soo Park,et al.  Limit theorems for boundary function estimators , 2002 .

[20]  L. Simar,et al.  Nonparametric efficiency analysis: a multivariate conditional quantile approach , 2007 .

[21]  M. Nussbaum,et al.  On the Estimation of a Support Curve of Indeterminate Sharpness , 1997 .

[22]  B. Park,et al.  On Polynomial Estimators of Frontiers and Boundaries , 1998 .

[23]  Philippe Vanden Eeckaut,et al.  Evaluating the performance of US credit unions , 1993 .

[24]  Manuel Landajo,et al.  Measuring firm performance by using linear and non‐parametric quantile regressions , 2008 .

[25]  R. Shepherd Theory of cost and production functions , 1970 .

[26]  C. Thomas-Agnan,et al.  NONPARAMETRIC FRONTIER ESTIMATION: A CONDITIONAL QUANTILE-BASED APPROACH , 2005, Econometric Theory.

[27]  Léopold Simar,et al.  A Note on the Convergence of Nonparametric DEA Efficiency Measures , 1996 .

[28]  Irène Gijbels,et al.  Estimating Frontier Cost Models Using Extremiles , 2011 .

[29]  Donald J. Smith A Theoretic Framework for the Analysis of Credit Union Decision Making , 1984 .

[30]  R. Färe,et al.  Benefit and Distance Functions , 1996 .

[31]  David C. Wheelock,et al.  Non-Parametric, Unconditional Quantile Estimation for Efficiency Analysis With an Application to Federal Reserve Check Processing Operations , 2007 .

[32]  A. Ruiz-Gazen,et al.  ROBUST NONPARAMETRIC FRONTIER ESTIMATORS: QUALITATIVE ROBUSTNESS AND INFLUENCE FUNCTION , 2006 .

[33]  A. Tsybakov,et al.  Estimation of non-sharp support boundaries , 1995 .

[34]  A. V. D. Vaart,et al.  Asymptotic Statistics: U -Statistics , 1998 .

[35]  Léopold Simar,et al.  FDH Efficiency Scores from a Stochastic Point of View , 1997 .

[36]  Michael Falk,et al.  A note on uniform asymptotic normality of intermediate order statistics , 1989, Annals of the Institute of Statistical Mathematics.

[37]  Keldon Bauer,et al.  Detecting abnormal credit union performance , 2008 .

[38]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[39]  John Goddard,et al.  The Growth of US Credit Unions , 2002 .

[40]  J. Florens,et al.  Frontier estimation and extreme values theory , 2010, 1011.5722.

[41]  Ing Rj Ser Approximation Theorems of Mathematical Statistics , 1980 .

[42]  Léopold Simar,et al.  Introducing Environmental Variables in Nonparametric Frontier Models: a Probabilistic Approach , 2005 .

[43]  Christine A. McClatchey,et al.  Do credit unions use their tax advantage to benefit members? Evidence from a cost function , 2003 .

[44]  Vernon Watts,et al.  The almost sure representation of intermediate order statistics , 1980 .

[45]  Paul W. Wilson,et al.  Exploring Research Frontiers in Contemporary Statistics and Econometrics , 2014 .

[46]  R. Koenker,et al.  Hierarchical Spline Models for Conditional Quantiles and the Demand for Electricity , 1990 .

[47]  Lei Si Ni Ke Resnick.S.I. Extreme values. regular variation. and point processes , 2011 .

[48]  B. Park,et al.  A NOTE ON THE CONVERGENCE OF NONPARAMETRIC DEA ESTIMATORS FOR PRODUCTION EFFICIENCY SCORES , 1998, Econometric Theory.

[49]  P. W. Wilson,et al.  ASYMPTOTICS AND CONSISTENT BOOTSTRAPS FOR DEA ESTIMATORS IN NONPARAMETRIC FRONTIER MODELS , 2008, Econometric Theory.

[50]  R. Färe,et al.  The measurement of efficiency of production , 1985 .

[51]  B. Park,et al.  THE FDH ESTIMATOR FOR PRODUCTIVITY EFFICIENCY SCORES , 2000, Econometric Theory.

[52]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[53]  J. Florens,et al.  Nonparametric frontier estimation: a robust approach , 2002 .

[54]  G. Debreu The Coefficient of Resource Utilization , 1951 .

[55]  David C. Wheelock,et al.  Are Credit Unions Too Small? , 2010, Review of Economics and Statistics.

[56]  Allen N. Berger,et al.  The Economic Effects of Technological Progress: Evidence from the Banking Industry , 2002 .

[57]  Kenneth R. Spong Banking regulation : its purposes, implementation, and effects , 1994 .