Transformation of Control in Congruent Self-Reconfigurable Robot Topologies

Much work on self-reconfigurable robotics has been focused on motion planning and physical reconfiguration of the robot. Using the Superbot self-reconfigurable robot, we focus on the details of realizing locomotion gaits given that a single robot topology can be realized in a large number of different ways. That is, each module in the robot topology has 4 symmetric orientations that are functional and shape equivalent. Once a role is selected for each module, such as through the use of hormone-inspired control, each module's role is supplied with a gait template which then must be transformed to suit the local configurations of each module with respect to the global topology. We provide a theoretical framework for which this can be accomplished

[1]  Mark Moll,et al.  SUPERBOT: A Deployable, Multi-Functional, and Modular Self-Reconfigurable Robotic System , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  Eiichi Yoshida,et al.  M-TRAN: self-reconfigurable modular robotic system , 2002 .

[3]  Wei-Min Shen,et al.  Mathematical foundation for hormone-inspired control for self-reconfigurable robotic systems , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[4]  Daniela Rus,et al.  Locomotion versatility through self-reconfiguration , 1999, Robotics Auton. Syst..

[5]  Eiichi Yoshida,et al.  Distributed adaptive locomotion by a modular robotic system, M-TRAN II , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[6]  Wei-Min Shen,et al.  Using role-based control to produce locomotion in chain-type self-reconfigurable robots , 2002 .

[7]  Daniel Marbach Evolution and Online Optimization of Central Pattern Generators for Modular Robot Locomotion , 2004 .

[8]  Wei-Min Shen,et al.  CONRO: Towards Deployable Robots with Inter-Robots Metamorphic Capabilities , 2000, Auton. Robots.

[9]  Marsette Vona,et al.  Crystalline Robots: Self-Reconfiguration with Compressible Unit Modules , 2001, Auton. Robots.

[10]  Zack J. Butler,et al.  Self-reconfiguring robots , 2002, CACM.

[11]  Ying Zhang,et al.  A general constraint-based control framework with examples in modular self-reconfigurable robots , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[12]  Wei-Min Shen,et al.  Hormone-inspired adaptive communication and distributed control for CONRO self-reconfigurable robots , 2002, IEEE Trans. Robotics Autom..

[13]  Ying Zhang,et al.  Phase automata: a programming model of locomotion gaits for scalable chain-type modular robots , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[14]  Henrik Hautop Lund,et al.  Modular ATRON: modules for a self-reconfigurable robot , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[15]  Mark Yim,et al.  PolyBot: a modular reconfigurable robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[16]  Saifallah Benjaafar,et al.  A miniature robotic system for reconnaissance and surveillance , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[17]  R. Quinn,et al.  Insect Designs for Improved Robot Mobility , 2001 .

[18]  David Austin,et al.  Design of a Modular Self-Reconfigurable Robot , 2001 .

[19]  Ying Zhang,et al.  Robotics: modular robots , 2002 .