Preferred Answer Sets for Extended Logic Programs

Abstract In this paper, we address the issue of how Gelfond and Lifschitz's answer set semantics for extended logic programs can be suitably modified to handle prioritized programs. In such programs an ordering on the program rules is used to express preferences. We show how this ordering can be used to define preferred answer sets and thus to increase the set of consequences of a program. We define a strong and a weak notion of preferred answer sets. The first takes preferences more seriously, while the second guarantees the existence of a preferred answer set for programs possessing at least one answer set. Adding priorities to rules is not new, and has been explored in different contexts. However, we show that many approaches to priority handling, most of which are inherited from closely related formalisms like default logic, are not suitable and fail on intuitive examples. Our approach, which obeys abstract, general principles that any approach to prioritized knowledge representation should satisfy, handles them in the expected way. Moreover, we investigate the complexity of our approach. It appears that strong preference on answer sets does not add on the complexity of the principal reasoning tasks, and weak preference leads only to a mild increase in complexity.

[1]  Kurt Konolige,et al.  Hierarchic Autoepistemic Theories for Nonmonotonic Reasoning , 1988, AAAI.

[2]  John S. Schlipf A Survey of Complexity and Undecidability Results in Logic Programming , 1992, Structural Complexity and Recursion-theoretic methods in Logic-Programming.

[3]  John Wylie Lloyd,et al.  Foundations of Logic Programming , 1987, Symbolic Computation.

[4]  David S. Johnson,et al.  A Catalog of Complexity Classes , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[5]  Victor W. Marek,et al.  The Stable Models of a Predicate Logic Program , 1994, J. Log. Program..

[6]  Georg Gottlob,et al.  The complexity of logic-based abduction , 1993, JACM.

[7]  Victor W. Marek,et al.  Computing Intersection of Autoepistemic Expansions , 1991, LPNMR.

[8]  Gerald Pfeifer,et al.  The KR System dlv: Progress Report, Comparisons and Benchmarks , 1998, KR.

[9]  John F. Horty,et al.  Some direct theories of nonmonotonic inheritance , 1994 .

[10]  Jürgen Dix,et al.  A Classification Theory of Semantics of Normal Logic Programs: I. Strong Properties , 1995, Fundam. Informaticae.

[11]  Donald Nute,et al.  Defeasible Logic , 1994, INAP.

[12]  EiterThomas,et al.  The complexity of logic-based abduction , 1995 .

[13]  Georg Gottlob,et al.  Succinctness as a Source of Complexity in Logical Formalisms , 1999, Ann. Pure Appl. Log..

[14]  Luís Moniz Pereira,et al.  Logic Programming and Knowledge Representation (LPKR'97) , 1997, ILPS.

[15]  Georg Gottlob,et al.  Complexity and expressive power of logic programming , 1997, Proceedings of Computational Complexity. Twelfth Annual IEEE Conference.

[16]  David Poole,et al.  On the Comparison of Theories: Preferring the Most Specific Explanation , 1985, IJCAI.

[17]  Gerhard Brewka Well-Founded Semantics for Extended Logic Programs with Dynamic Preferences , 1996, J. Artif. Intell. Res..

[18]  John S. Schlipf,et al.  The Expressive Powers of the Logic Programming Semantics , 1995, J. Comput. Syst. Sci..

[19]  Dirk Vermeir,et al.  A Fixpoint Semantics for Ordered Logic , 1990, J. Log. Comput..

[20]  David Poole,et al.  A Logical Framework for Default Reasoning , 1988, Artif. Intell..

[21]  Phan Minh Dung,et al.  An Argumentation Semantics for Logic Programming with Explicit Negation , 1993, ICLP.

[22]  Chiaki Sakama,et al.  Representing Priorities in Logic Programs , 1996, JICSLP.

[23]  Gerhard Brewka,et al.  Adding Priorities and Specificity to Default Logic , 1994, JELIA.

[24]  Norman Y. Foo,et al.  Towards Generalized Rule-based Updates , 1997, IJCAI.

[25]  Francesco Buccafurri,et al.  Strong and Weak Constraints in Disjunctive Datalog , 1997, LPNMR.

[26]  Hirofumi Katsuno,et al.  Propositional Knowledge Base Revision and Minimal Change , 1991, Artif. Intell..

[27]  Didier Dubois,et al.  Inconsistency Management and Prioritized Syntax-Based Entailment , 1993, IJCAI.

[28]  Henry Prakken,et al.  Logical Tools for Modelling Legal Argument , 1997 .

[29]  Klaus W. Wagner,et al.  More Complicated Questions About Maxima and Minima, and Some Closures of NP , 1986, Theor. Comput. Sci..

[30]  Zhi-Zhong Chen,et al.  The complexity of selecting maximal solutions , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[31]  Wacław Sierpiński,et al.  Cardinal and Ordinal Numbers , 1966 .

[32]  Shekhar Pradhan Combining Datalog Databases Using Priorities , 1994, COMAD.

[33]  Sarit Kraus,et al.  Nonmonotonic Reasoning, Preferential Models and Cumulative Logics , 1990, Artif. Intell..

[34]  Chitta Baral,et al.  Logic Programming and Knowledge Representation , 1994, J. Log. Program..

[35]  Nicola Leone,et al.  A Deductive Environment for Dealing with Objects and Nonmonotonic Reasoning , 1997, IEEE Trans. Knowl. Data Eng..

[36]  Sakti Pramanik,et al.  Reliable Semantics for Extended Logic Programs with Rule Prioritization , 1995, J. Log. Comput..

[37]  David S. Touretzky,et al.  A Skeptic's Menagerie: Conflictors, Preemptors, Reinstaters, and Zombies in Nonrnonotonic Inheritance , 1991, IJCAI.

[38]  C. E. Alchourrón,et al.  On the logic of theory change: Partial meet contraction and revision functions , 1985 .

[39]  Georg Gottlob,et al.  Adding disjunction to datalog (extended abstract) , 1994, PODS.

[40]  Tran Cao Son,et al.  Reasoning with Prioritized Defaults , 1997, LPKR.

[41]  Jan Maluszy¿ski Answer Sets for Prioritized Logic Programs , 1997 .

[42]  Georg Gottlob,et al.  Second Order Logic and the Weak Exponential Hierarchies , 1995, MFCS.

[43]  Jorge Lobo,et al.  Abductive Consequence Relations , 1997, Artif. Intell..

[44]  Francesco Buccafurri,et al.  Stable Models and Their Computation for Logic Programming with Inheritance and True Negation , 1996, J. Log. Program..

[45]  Peter Gärdenfors,et al.  On the logic of theory change: Partial meet contraction and revision functions , 1985, Journal of Symbolic Logic.

[46]  Henry Prakken,et al.  Argument-Based Extended Logic Programming with Defeasible Priorities , 1997, J. Appl. Non Class. Logics.

[47]  Georg Gottlob,et al.  Disjunctive datalog , 1997, TODS.

[48]  Jürgen Dix,et al.  A Classification Theory of Semantics of Normal Logic Programs: II. Weak Properties , 1995, Fundam. Informaticae.

[49]  Victor W. Marek,et al.  Autoepistemic logic , 1991, JACM.

[50]  Bernhard Nebel,et al.  How Hard is it to Revise a Belief Base , 1996 .

[51]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[52]  Klaus W. Wagner,et al.  Bounded Query Classes , 1990, SIAM J. Comput..

[53]  Jussi Rintanen Lexicographic Priorities in Default Logic , 1998, Artif. Intell..

[54]  Teodor C. Przymusinski,et al.  On the Relationship Between Circumscription and Negation as Failure , 1989, Artif. Intell..

[55]  Dov M. Gabbay,et al.  Credulous vs. Sceptical Semantics for Ordered Logic Programs , 1991, KR.

[56]  R. Fisher Mathematics of Inheritance , 1933, Nature.

[57]  Torsten Schaub,et al.  Compiling Reasoning with and about Preferences into Default Logic , 1997, IJCAI.

[58]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[59]  V. Wiktor Marek,et al.  Nonmonotonic Logic , 1993, Artificial Intelligence.

[60]  Gerald Pfeifer,et al.  A Deductive System for Non-Monotonic Reasoning , 1997, LPNMR.

[61]  Jussi Rintanen On Specificity in Default Logic , 1995, IJCAI.