Appearance-based localization using Group LASSO regression with an indoor experiment

This paper proposes appearance-based localization using online vision images collected from an omnidirectional camera attached on a mobile robot or a vehicle. Our approach builds on a combination of the group Least Absolute Shrinkage and Selection Operator (LASSO) and the extended Kalman filter (EKF). Fast Fourier transform (FFT) and Histogram are extracted from omni-directional images, the features of which are selected via the group LASSO regression. The EKF takes the output of the group LASSO regression based first-stage localization as the observation. The indoor experimental results demonstrate the effectiveness of our approach.

[1]  Ben J. A. Kröse,et al.  A probabilistic model for appearance-based robot localization , 2001, Image Vis. Comput..

[2]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[3]  Avinash C. Kak,et al.  Vision for Mobile Robot Navigation: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Francisco Bonin-Font,et al.  Visual Navigation for Mobile Robots: A Survey , 2008, J. Intell. Robotic Syst..

[5]  Emanuele Menegatti,et al.  Image-based memory for robot navigation using properties of omnidirectional images , 2004, Robotics Auton. Syst..

[6]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[7]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[8]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[9]  Nixon,et al.  Feature Extraction & Image Processing , 2008 .

[10]  Mahdi Jadaliha,et al.  Distributed Gaussian Process Regression Under Localization Uncertainty , 2015 .

[11]  Michael I. Jordan,et al.  Union support recovery in high-dimensional multivariate regression , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[12]  Mahdi Jadaliha,et al.  Feature selection for position estimation using an omnidirectional camera , 2015, Image Vis. Comput..

[13]  Bruno Sinopoli,et al.  Kalman filtering with intermittent observations , 2004, IEEE Transactions on Automatic Control.

[14]  Shree K. Nayar,et al.  Multiresolution histograms and their use for recognition , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  James J. Little,et al.  Vision-based global localization and mapping for mobile robots , 2005, IEEE Transactions on Robotics.

[16]  Frédéric Lerasle,et al.  Visual landmarks detection and recognition for mobile robot navigation , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[17]  Mahdi Jadaliha,et al.  Gaussian Process Regression for Sensor Networks Under Localization Uncertainty , 2013, IEEE Transactions on Signal Processing.

[18]  Pascal Vasseur,et al.  Central catadioptric image processing with geodesic metric , 2011, Image Vis. Comput..