Realization of GaInP/Si Dual-Junction Solar Cells With 29.8% 1-Sun Efficiency

Combining a Si solar cell with a high-bandgap top cell reduces the thermalization losses in the short wavelength and enables theoretical 1-sun efficiencies far over 30%. We have investigated the fabrication and optimization of Si-based tandem solar cells with 1.8-eV rear-heterojunction GaInP top cells. The III–V and Si heterojunction subcells were fabricated separately and joined by mechanical stacking using electrically insulating optically transparent interlayers. Our GaInP/Si dual-junction solar cells have achieved a certified cumulative 1-sun efficiency of 29.8% ± 0.6% (AM1.5g) in four-terminal operation conditions, which exceeds the record 1-sun efficiencies achieved with both III–V and Si single-junction solar cells. The effect of luminescent coupling between the subcells has been investigated, and optical losses in the solar cell structure have been addressed.

[1]  Jan Benick,et al.  Wafer-Bonded GaInP/GaAs//Si Solar Cells With 30% Efficiency Under Concentrated Sunlight , 2015, IEEE Journal of Photovoltaics.

[2]  Sarah R. Kurtz,et al.  Optically Enhanced Photon Recycling in Mechanically Stacked Multijunction Solar Cells , 2016, IEEE Journal of Photovoltaics.

[3]  C. Ballif,et al.  High-efficiency Silicon Heterojunction Solar Cells: A Review , 2012 .

[4]  Guangda Niu,et al.  Review of recent progress in chemical stability of perovskite solar cells , 2015 .

[5]  M. Yamaguchi Potential and present status of III–V/Si tandem solar cells , 2014, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[6]  Darius Kuciauskas,et al.  Effects of Internal Luminescence and Internal Optics on $V_{\bf oc}$ and $J_{\bf sc}$ of III--V Solar Cells , 2013, IEEE Journal of Photovoltaics.

[7]  Zhe Liu,et al.  The realistic energy yield potential of GaAs-on-Si tandem solar cells: a theoretical case study. , 2015, Optics express.

[8]  David D. Smith,et al.  Toward the Practical Limits of Silicon Solar Cells , 2014, IEEE Journal of Photovoltaics.

[9]  Frank Dimroth,et al.  Overview about Technology Perspectives for High Efficiency Solar Cells for Space and Terrestrial Applications , 2013 .

[10]  Christophe Ballif,et al.  Silicon Heterojunction Solar Cells: Towards Low-cost High-Efficiency Industrial Devices and Application to Low-concentration PV , 2015 .

[11]  M. Steiner,et al.  Development of highly-efficient GaInP/Si Tandem Solar Cells , 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

[12]  C. Ballif,et al.  Current Losses at the Front of Silicon Heterojunction Solar Cells , 2012, IEEE Journal of Photovoltaics.

[13]  Martin A. Green,et al.  Solar cell efficiency tables (version 46) , 2015 .

[14]  Takashi Jimbo,et al.  MOCVD growth of high efficiency current-matched tandem solar cell , 1997 .

[15]  Myles A. Steiner,et al.  Optical enhancement of the open-circuit voltage in high quality GaAs solar cells , 2013 .

[16]  Haohui Liu,et al.  Numerical Analysis of Radiative Recombination and Reabsorption in GaAs/Si Tandem , 2015, IEEE Journal of Photovoltaics.

[17]  G. F. Virshup,et al.  A 31%-efficient GaAs/silicon mechanically stacked, multijunction concentrator solar cell , 1988, Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference.

[18]  Naoteru Matsubara,et al.  Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell , 2014, IEEE Journal of Photovoltaics.

[19]  John F. Geisz,et al.  Progress Towards a 30% Efficient GaInP/Si Tandem Solar Cell , 2015 .

[20]  C. Ballif,et al.  Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm(2). , 2016, The journal of physical chemistry letters.

[21]  Myles A. Steiner,et al.  A monolithic three‐terminal GaInAsP/GaInAs tandem solar cell , 2009 .

[22]  M. Green,et al.  Supercharging Silicon Solar Cell Performance by Means of Multijunction Concept , 2015, IEEE Journal of Photovoltaics.

[23]  K. Yoshikawa,et al.  Progress & Challenges in Thin-Film Silicon Photovoltaics: Heterojunctions & Multijunctions , 2015 .

[24]  M Jamal Deen,et al.  Nanobonding Technology Toward Electronic, Fluidic, and Photonic Systems Integration , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[25]  M. Taguchi,et al.  24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer , 2013, IEEE Journal of Photovoltaics.

[26]  M. Shur,et al.  Handbook Series on Semiconductor Parameters , 1996 .

[27]  S. A. Ringel,et al.  Epitaxially-grown metamorphic GaAsP/Si dual-junction solar cells , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).

[28]  E. Fitzgerald,et al.  Dual junction GaInP/GaAs solar cells grown on metamorphic SiGe/Si substrates with high open circuit voltage , 2006, IEEE Electron Device Letters.

[29]  K. McIntosh,et al.  OPAL 2: Rapid optical simulation of silicon solar cells , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[30]  Jonathan P. Mailoa,et al.  A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction , 2015 .

[31]  Myles A. Steiner,et al.  Enhanced external radiative efficiency for 20.8 efficient single-junction GaInP solar cells , 2013 .

[32]  Daryl R. Myers,et al.  Primary reference cell calibrations, at SERI: history and methods , 1990, IEEE Conference on Photovoltaic Specialists.

[33]  Gerald Siefer,et al.  Comparison of Direct Growth and Wafer Bonding for the Fabrication of GaInP/GaAs Dual-Junction Solar Cells on Silicon , 2014, IEEE Journal of Photovoltaics.

[34]  R. N. Kleiman,et al.  III-V on Silicon Multi-Junction Solar Cell with 25% 1-Sun Efficiency via Direct Metal Interconnect and Areal Current Matching , 2012 .

[35]  Isik C. Kizilyalli,et al.  27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[36]  Y. Arakawa,et al.  III-V/Si hybrid photonic devices by direct fusion bonding , 2012, Scientific Reports.

[37]  Christophe Ballif,et al.  Organic–Inorganic Halide Perovskites: Perspectives for Silicon-Based Tandem Solar Cells , 2014, IEEE Journal of Photovoltaics.

[38]  S. Glunz,et al.  Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells , 2013, IEEE Journal of Photovoltaics.

[39]  Martin A. Green,et al.  Lambertian light trapping in textured solar cells and light‐emitting diodes: analytical solutions , 2002 .