Computational identification of microRNAs and their targets

MicroRNAs (miRNAs) are one class of newly identified riboregulators of gene expression in many eukaryotic organisms. They play important roles in multiple biological and metabolic processes, including developmental timing, signal transduction, cell maintenance and differentiation, diseases and cancers. miRNAs regulate gene expression at the posttranscriptional level by directly cleaving targeted mRNAs or repressing translation. Although the founding members of miRNAs were discovered by genetic screening approaches, experimental approaches were limited by their low efficiency, time consuming, and high cost. As an alternative, computational approaches were developed. Computational approaches for identifying miRNAs are based on the following major characteristics of miRNAs: hairpin-shaped secondary structures, high conservation for some miRNAs, and high minimal folding free energy index (MFEI). Computational approaches also play an important role in identifying miRNA targets. A majority of known miRNAs and their targets were identified by computational approaches. Several web-based or non-web-based computer software programs are publicly available for predicting miRNAs and their targets.

[1]  T. Tuschl,et al.  Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. , 2004, Molecular cell.

[2]  R. Aharonov,et al.  Identification of hundreds of conserved and nonconserved human microRNAs , 2005, Nature Genetics.

[3]  Daniel Gautheret,et al.  Profile-based detection of microRNA precursors in animal genomes , 2005, Bioinform..

[4]  V. Ambros,et al.  An Extensive Class of Small RNAs in Caenorhabditis elegans , 2001, Science.

[5]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[6]  R. Shiekhattar,et al.  MicroRNA biogenesis and cancer. , 2005, Cancer research.

[7]  Baohong Zhang,et al.  Identification of 188 conserved maize microRNAs and their targets , 2006, FEBS letters.

[8]  C. Sander,et al.  Identification of microRNAs of the herpesvirus family , 2005, Nature Methods.

[9]  V. Ambros MicroRNA Pathways in Flies and Worms Growth, Death, Fat, Stress, and Timing , 2003, Cell.

[10]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[11]  M. Xie,et al.  Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes , 2005, Development.

[12]  Isaac Bentwich Available online , 2005 .

[13]  Jon D. McAuliffe,et al.  Phylogenetic Shadowing of Primate Sequences to Find Functional Regions of the Human Genome , 2003, Science.

[14]  Yang Li,et al.  Computational identification of novel family members of microRNA genes in Arabidopsis thaliana and Oryza sativa. , 2005, Acta biochimica et biophysica Sinica.

[15]  Anindya Dutta,et al.  Small RNAs with Imperfect Match to Endogenous mRNA Repress Translation , 2003, Journal of Biological Chemistry.

[16]  B. Cullen,et al.  siRNAs: a new wave of RNA-based therapeutics. , 2003, The Journal of antimicrobial chemotherapy.

[17]  Yuanji Zhang,et al.  miRU: an automated plant miRNA target prediction server , 2005, Nucleic Acids Res..

[18]  A. Hatzigeorgiou,et al.  A combined computational-experimental approach predicts human microRNA targets. , 2004, Genes & development.

[19]  B. Reinhart,et al.  Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA , 2000, Nature.

[20]  J. Cavaille,et al.  A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. , 2004, Genome research.

[21]  K. Lindblad-Toh,et al.  Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals , 2005, Nature.

[22]  Sam Griffiths-Jones,et al.  The microRNA Registry , 2004, Nucleic Acids Res..

[23]  Giovanni De Micheli,et al.  Prediction of regulatory modules comprising microRNAs and target genes , 2005, ECCB/JBI.

[24]  A. Pasquinelli,et al.  Regulation by let-7 and lin-4 miRNAs Results in Target mRNA Degradation , 2005, Cell.

[25]  M. Schmid,et al.  Specific effects of microRNAs on the plant transcriptome. , 2005, Developmental cell.

[26]  Y. Yatabe,et al.  A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. , 2005, Cancer research.

[27]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[28]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[29]  S. Cox,et al.  Evidence that miRNAs are different from other RNAs , 2006, Cellular and Molecular Life Sciences CMLS.

[30]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[31]  Xiao Li,et al.  Computational detection of microRNAs targeting transcription factor genes in Arabidopsis thaliana , 2005, Comput. Biol. Chem..

[32]  Hong Jiang,et al.  Identification of human fetal liver miRNAs by a novel method , 2005, FEBS letters.

[33]  Nikolaus Rajewsky,et al.  Computational identification of microRNA targets. , 2004 .

[34]  George P Cobb,et al.  microRNAs as oncogenes and tumor suppressors. , 2007, Developmental biology.

[35]  Yuichiro Watanabe,et al.  Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Phillip A Sharp,et al.  siRNAs can function as miRNAs , 2003 .

[37]  E. Miska,et al.  MicroRNA functions in animal development and human disease , 2005, Development.

[38]  Michaela Scherr,et al.  MicroRNA and lung cancer. , 2005, The New England journal of medicine.

[39]  David W. Digby,et al.  mRNAs have greater negative folding free energies than shuffled or codon choice randomized sequences. , 1999, Nucleic acids research.

[40]  Vinod Scaria,et al.  Targets for human encoded microRNAs in HIV genes. , 2005, Biochemical and biophysical research communications.

[41]  Baohong Zhang,et al.  Conservation and divergence of plant microRNA genes. , 2006, The Plant journal : for cell and molecular biology.

[42]  D. Bartel,et al.  Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. , 2005, RNA.

[43]  E. Lai Predicting and validating microRNA targets , 2004, Genome Biology.

[44]  Emmanuel Labourier,et al.  MicroRNAs as potential diagnostic markers of disease , 2005 .

[45]  John J. Grefenstette,et al.  EST-PAGE - managing and analyzing EST data , 2004, Bioinform..

[46]  Baohong Zhang,et al.  MicroRNAs and their regulatory roles in animals and plants , 2007, Journal of cellular physiology.

[47]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[48]  C. Burge,et al.  Vertebrate MicroRNA Genes , 2003, Science.

[49]  Anton J. Enright,et al.  Identification of Virus-Encoded MicroRNAs , 2004, Science.

[50]  T. Tuschl,et al.  Identification of Novel Genes Coding for Small Expressed RNAs , 2001, Science.

[51]  Detlef D. Leipe,et al.  Evolutionary history of "early-diverging" eukaryotes: the excavate taxon Carpediemonas is a close relative of Giardia. , 2002, Molecular biology and evolution.

[52]  A. Pasquinelli,et al.  Control of developmental timing by micrornas and their targets. , 2002, Annual review of cell and developmental biology.

[53]  Julius Brennecke,et al.  Identification of Drosophila MicroRNA Targets , 2003, PLoS biology.

[54]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[55]  Y. Li,et al.  Incorporating structure to predict microRNA targets. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Diana V. Dugas,et al.  MicroRNA regulation of gene expression in plants. , 2004, Current opinion in plant biology.

[57]  D. Bartel,et al.  Antiquity of MicroRNAs and Their Targets in Land Plantsw⃞ , 2005, The Plant Cell Online.

[58]  Jin-Hua Han,et al.  MicroRNA: Biological and Computational Perspective , 2016, Genomics, proteomics & bioinformatics.

[59]  Baohong Zhang,et al.  Identification and characterization of new plant microRNAs using EST analysis , 2005, Cell Research.

[60]  De-Pei Liu,et al.  The role of small RNAs in human diseases: Potential troublemaker and therapeutic tools , 2005, Medicinal research reviews.

[61]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[62]  Laurence D. Hurst,et al.  Evidence for a preferential targeting of 3′-UTRs by cis-encoded natural antisense transcripts , 2005, Nucleic acids research.

[63]  Baohong Zhang,et al.  Plant microRNA: a small regulatory molecule with big impact. , 2006, Developmental biology.

[64]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[65]  William H Press,et al.  Human microRNAs target a functionally distinct population of genes with AT-rich 3′ UTRs , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[66]  B. Reinhart,et al.  A biochemical framework for RNA silencing in plants. , 2003, Genes & development.

[67]  J. Carrington,et al.  Small RNAs and Arabidopsis. A Fast Forward Look , 2005, Plant Physiology.

[68]  James R. Brown,et al.  A computational view of microRNAs and their targets. , 2005, Drug discovery today.

[69]  Stijn van Dongen,et al.  miRBase: microRNA sequences, targets and gene nomenclature , 2005, Nucleic Acids Res..

[70]  Hajime Sakai,et al.  Regulation of Flowering Time and Floral Organ Identity by a MicroRNA and Its APETALA2-Like Target Genes Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.016238. , 2003, The Plant Cell Online.

[71]  V. Kim,et al.  MicroRNA maturation: stepwise processing and subcellular localization , 2002, The EMBO journal.

[72]  V. Ambros The functions of animal microRNAs , 2004, Nature.

[73]  G. Rubin,et al.  Computational identification of Drosophila microRNA genes , 2003, Genome Biology.

[74]  Daniel H. Huson,et al.  Identification of plant microRNA homologs , 2006, Bioinform..

[75]  Marjori Matzke,et al.  Evidence for Nuclear Processing of Plant Micro RNA and Short Interfering RNA Precursors1[w] , 2003, Plant Physiology.

[76]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[77]  Y. Hahn,et al.  Discovery of genes for ginsenoside biosynthesis by analysis of ginseng expressed sequence tags , 2003, Plant Cell Reports.

[78]  Byoung-Tak Zhang,et al.  Human microRNA prediction through a probabilistic co-learning model of sequence and structure , 2005, Nucleic acids research.

[79]  Baohong Zhang,et al.  MicroRNA: A new player in stem cells , 2006, Journal of cellular physiology.

[80]  D. Bartel,et al.  Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. , 2004, Molecular cell.

[81]  Eun-Young Choi,et al.  The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3'UTR. , 2004, Genes & development.

[82]  Liang-Hu Qu,et al.  Identification of 20 microRNAs from Oryza sativa. , 2004, Nucleic acids research.

[83]  P. Rouzé,et al.  Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[84]  D. Marks,et al.  The small RNA profile during Drosophila melanogaster development. , 2003, Developmental cell.

[85]  C. Croce,et al.  Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[86]  D. Baulcombe,et al.  Identification of new small non-coding RNAs from tobacco and Arabidopsis. , 2005, Biochimie.

[87]  Hanah Margalit,et al.  Clustering and conservation patterns of human microRNAs , 2005, Nucleic acids research.

[88]  Guiliang Tang,et al.  siRNA and miRNA: an insight into RISCs. , 2005, Trends in biochemical sciences.

[89]  V. Ambros,et al.  MicroRNAs and Other Tiny Endogenous RNAs in C. elegans , 2003, Current Biology.

[90]  Anton J. Enright,et al.  MicroRNA targets in Drosophila , 2003, Genome Biology.

[91]  G. Church,et al.  Computational and experimental identification of C. elegans microRNAs. , 2003, Molecular cell.

[92]  Jin-Wu Nam,et al.  Genomics of microRNA. , 2006, Trends in genetics : TIG.

[93]  P. Macdonald,et al.  Prediction and verification of microRNA targets by MovingTargets, a highly adaptable prediction method , 2005, BMC Genomics.

[94]  Yves Van de Peer,et al.  Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences , 2004, Bioinform..

[95]  A. Kerlavage,et al.  Complementary DNA sequencing: expressed sequence tags and human genome project , 1991, Science.

[96]  V. Ambros microRNAs Tiny Regulators with Great Potential , 2001, Cell.

[97]  Eric C Lai,et al.  microRNAs: Runts of the Genome Assert Themselves , 2003, Current Biology.

[98]  Malcolm J. Low,et al.  Identification of Neuronal Enhancers of the Proopiomelanocortin Gene by Transgenic Mouse Analysis and Phylogenetic Footprinting , 2005, Molecular and Cellular Biology.

[99]  Hiroyuki Tagawa,et al.  Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. , 2004, Cancer research.

[100]  Hsien-Da Huang,et al.  miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes , 2005, Nucleic Acids Res..

[101]  C. Llave,et al.  Cleavage of Scarecrow-like mRNA Targets Directed by a Class of Arabidopsis miRNA , 2002, Science.

[102]  Kouji Hayashi,et al.  Identifying gene-independent noncoding functional elements in the yeast ribosomal DNA by phylogenetic footprinting. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[103]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[104]  G. Ruvkun,et al.  A uniform system for microRNA annotation. , 2003, RNA.

[105]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[106]  B. Patterson,et al.  Letter to the editor. , 2018, Journal of professional nursing : official journal of the American Association of Colleges of Nursing.

[107]  Terry Gaasterland,et al.  Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets , 2004, Genome Biology.

[108]  V. Ambros,et al.  Role of MicroRNAs in Plant and Animal Development , 2003, Science.

[109]  B. Reinhart,et al.  Prediction of Plant MicroRNA Targets , 2002, Cell.

[110]  H. Meijer,et al.  Mechanisms of translational control by the 3' UTR in development and differentiation. , 2005, Seminars in cell & developmental biology.

[111]  M. Goodman,et al.  Embryonic ε and γ globin genes of a prosimian primate (Galago crassicaudatus): Nucleotide and amino acid sequences, developmental regulation and phylogenetic footprints , 1988 .

[112]  Diana V. Dugas,et al.  MicroRNA Regulation of NAC-Domain Targets Is Required for Proper Formation and Separation of Adjacent Embryonic, Vegetative, and Floral Organs , 2004, Current Biology.

[113]  C. Croce,et al.  MicroRNA gene expression deregulation in human breast cancer. , 2005, Cancer research.

[114]  M. Amarzguioui,et al.  Similar behaviour of single-strand and double-strand siRNAs suggests they act through a common RNAi pathway. , 2003, Nucleic acids research.

[115]  Michel J. Weber New human and mouse microRNA genes found by homology search , 2004, The FEBS journal.

[116]  Edgar Wingender,et al.  Evaluating phylogenetic footprinting for human-rodent comparisons , 2006, Bioinform..

[117]  Eugene Berezikov,et al.  Camels and zebrafish, viruses and cancer: a microRNA update. , 2005, Human molecular genetics.

[118]  C. Burge,et al.  Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification. , 2004, RNA.

[119]  Hong-Wei Xue,et al.  Control of Root Cap Formation by MicroRNA-Targeted Auxin Response Factors in Arabidopsisw⃞ , 2005, The Plant Cell Online.

[120]  Ivo L. Hofacker,et al.  Vienna RNA secondary structure server , 2003, Nucleic Acids Res..

[121]  E. Birney,et al.  Comparative genomics: genome-wide analysis in metazoan eukaryotes , 2003, Nature Reviews Genetics.

[122]  Peter M. Waterhouse,et al.  Plant and animal microRNAs: similarities and differences , 2005, Functional & Integrative Genomics.

[123]  Hiroaki Kawasaki,et al.  Identification of target genes of microRNAs in retinoic acid-induced neuronal differentiation , 2005 .

[124]  W. Filipowicz,et al.  Post-transcriptional gene silencing by siRNAs and miRNAs. , 2005, Current opinion in structural biology.

[125]  John L. Bowman,et al.  Gene regulation: Ancient microRNA target sequences in plants , 2004, Nature.

[126]  Jay Nelson,et al.  Identification and Characterization of Human Cytomegalovirus-Encoded MicroRNAs , 2005, Journal of Virology.

[127]  Kristin C. Gunsalus,et al.  microRNA Target Predictions across Seven Drosophila Species and Comparison to Mammalian Targets , 2005, PLoS Comput. Biol..

[128]  Anders Krogh,et al.  Computational evidence for hundreds of non-conserved plant microRNAs , 2005, BMC Genomics.

[129]  Byoung-Tak Zhang,et al.  Computational Methods for Identification of Human microRNA Precursors , 2004, PRICAI.

[130]  Karen S. Osmont,et al.  A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[131]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[132]  Peter F Stadler,et al.  Evolution of microRNAs located within Hox gene clusters. , 2005, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[133]  A. Bradley,et al.  Identification of mammalian microRNA host genes and transcription units. , 2004, Genome research.

[134]  J. Sabina,et al.  Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. , 1999, Journal of molecular biology.

[135]  M. Mann,et al.  miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. , 2002, Genes & development.

[136]  F. Slack,et al.  Architecture of a validated microRNA::target interaction. , 2004, Chemistry & biology.

[137]  R. Russell,et al.  Principles of MicroRNA–Target Recognition , 2005, PLoS biology.

[138]  R. Overbeek,et al.  Searching for patterns in genomic data. , 1997, Trends in genetics : TIG.

[139]  Robert S Root-Bernstein,et al.  HIV may produce inhibitory microRNAs (miRNAs) that block production of CD28, CD4 and some interleukins. , 2005, Journal of theoretical biology.

[140]  Ye Ding,et al.  Sfold web server for statistical folding and rational design of nucleic acids , 2004, Nucleic Acids Res..

[141]  R. Sunkar,et al.  Novel and Stress-Regulated MicroRNAs and Other Small RNAs from Arabidopsis , 2004, The Plant Cell Online.

[142]  W. Miller,et al.  Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. , 2000, Science.

[143]  Scott A. Givan,et al.  ASRP: the Arabidopsis Small RNA Project Database , 2004, Nucleic Acids Res..

[144]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[145]  Peter F Stadler,et al.  Molecular evolution of a microRNA cluster. , 2004, Journal of molecular biology.

[146]  A. Adai,et al.  Computational prediction of miRNAs in Arabidopsis thaliana. , 2005, Genome research.

[147]  David C Baulcombe,et al.  Cloning and characterization of micro-RNAs from moss. , 2005, The Plant journal : for cell and molecular biology.

[148]  E. Lai Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation , 2002, Nature Genetics.

[149]  Ola Snøve,et al.  Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. , 2005, RNA.

[150]  G. Wong,et al.  The 3' UTR of human MnSOD mRNA hybridizes to a small cytoplasmic RNA and inhibits gene expression. , 2000, Biochemical and biophysical research communications.

[151]  A. Caudy,et al.  Role for a bidentate ribonuclease in the initiation step of RNA interference , 2001 .

[152]  Kevin Kim,et al.  Targets of microRNA regulation in the Drosophila oocyte proteome. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[153]  Fei Li,et al.  MicroRNA identification based on sequence and structure alignment , 2005, Bioinform..

[154]  C. Burge,et al.  The microRNAs of Caenorhabditis elegans. , 2003, Genes & development.

[155]  Scott A. Givan,et al.  Expression of Arabidopsis MIRNA Genes1[w] , 2005, Plant Physiology.

[156]  Kathryn A. VandenBosch,et al.  Computational Identification and Characterization of Novel Genes from Legumes1[w] , 2004, Plant Physiology.

[157]  J. Ohlrogge,et al.  Unraveling plant metabolism by EST analysis. , 2000, Current opinion in plant biology.

[158]  Arend Sidow,et al.  Genomic regulatory regions: insights from comparative sequence analysis. , 2003, Current opinion in genetics & development.