Simulation‐based uncertainty quantification of human arterial network hemodynamics

This work aims at identifying and quantifying uncertainties from various sources in human cardiovascular system based on stochastic simulation of a one-dimensional arterial network. A general analysis of different uncertainties and probability characterization with log-normal distribution of these uncertainties is introduced. Deriving from a deterministic one-dimensional fluid-structure interaction model, we establish the stochastic model as a coupled hyperbolic system incorporated with parametric uncertainties to describe the blood flow and pressure wave propagation in the arterial network. By applying a stochastic collocation method with sparse grid technique, we study systemically the statistics and sensitivity of the solution with respect to many different uncertainties in a relatively complete arterial network with potential physiological and pathological implications for the first time.

[1]  Alfio Quarteroni,et al.  Cardiovascular mathematics : modeling and simulation of the circulatory system , 2009 .

[2]  A. C. Davison Statistical models: Name Index , 2003 .

[3]  Fabio Nobile Coupling strategies for the numerical simulation of blood flow in deformable arteries by 3D and 1D models , 2009, Math. Comput. Model..

[4]  A. Quarteroni,et al.  One-dimensional models for blood flow in arteries , 2003 .

[5]  Christin Wirth The Essential Physics of Medical Imaging , 2003, European Journal of Nuclear Medicine and Molecular Imaging.

[6]  Barbara I. Wohlmuth,et al.  Uncertainty Modeling Using Fuzzy Arithmetic Based On Sparse Grids: Applications To Dynamic Systems , 2004, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[7]  Alison L. Marsden,et al.  A stochastic collocation method for uncertainty quantification and propagation in cardiovascular simulations. , 2011, Journal of biomechanical engineering.

[8]  A. Quarteroni,et al.  A SEMI-IMPLICIT APPROACH FOR FLUID-STRUCTURE INTERACTION BASED ON AN ALGEBRAIC FRACTIONAL STEP METHOD , 2007 .

[9]  N. Stergiopulos,et al.  Validation of a one-dimensional model of the systemic arterial tree. , 2009, American journal of physiology. Heart and circulatory physiology.

[10]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[11]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[12]  I. Babuska,et al.  Reliability of computational science , 2007 .

[13]  A. C. Davison,et al.  Statistical models: Name Index , 2003 .

[14]  Amir Haghighat,et al.  Snapshots of Hemodynamics: An Aid for Clinical Research and Graduate Education , 2005 .

[15]  Dongbin Xiu,et al.  Parametric uncertainty analysis of pulse wave propagation in a model of a human arterial network , 2007, J. Comput. Phys..

[16]  高等学校計算数学学報編輯委員会編 高等学校計算数学学報 = Numerical mathematics , 1979 .

[17]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[18]  A. Quarteroni,et al.  A reduced computational and geometrical framework for inverse problems in hemodynamics , 2013, International journal for numerical methods in biomedical engineering.

[19]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[20]  Christian Soize,et al.  Construction of probability distributions in high dimension using the maximum entropy principle: Applications to stochastic processes, random fields and random matrices , 2008 .

[21]  Y. Maday,et al.  Reduced Basis Techniques for Stochastic Problems , 2010, 1004.0357.

[22]  Paolo Zunino,et al.  Mathematical and numerical modeling of mass transfer in the vascular system , 2002 .

[23]  Daniel Kressner,et al.  Low-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems , 2011, SIAM J. Matrix Anal. Appl..

[24]  A. Quarteroni,et al.  Fluid–structure algorithms based on Steklov–Poincaré operators , 2006 .

[25]  Alfio Quarteroni,et al.  Computational vascular fluid dynamics: problems, models and methods , 2000 .

[26]  G E Karniadakis,et al.  LARGE‐SCALE SIMULATION OF THE HUMAN ARTERIAL TREE , 2009, Clinical and experimental pharmacology & physiology.

[27]  Annalisa Quaini,et al.  Splitting Methods Based on Algebraic Factorization for Fluid-Structure Interaction , 2008, SIAM J. Sci. Comput..

[28]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[29]  Pablo J. Blanco,et al.  A two-level time step technique for the partitioned solution of one-dimensional arterial networks , 2012 .

[30]  Gianluigi Rozza Shape design by optimal flow control and reduced basis techniques , 2005 .

[31]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[32]  K. Ouriel Peripheral arterial disease , 2001, The Lancet.

[33]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[34]  Alfio Quarteroni,et al.  Mathematical Modelling and Numerical Simulation of the Cardiovascular System , 2004 .

[35]  Gianluigi Rozza,et al.  Modeling of physiological flows , 2012 .

[36]  Spencer J. Sherwin,et al.  Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system , 2003 .

[37]  A. Malossi Partitioned Solution of Geometrical Multiscale Problems for the Cardiovascular System , 2012 .

[38]  Miguel A. Fernández,et al.  Numerical Simulation of the Electromechanical Activity of the Heart , 2009, FIMH.

[39]  A. Nouy A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations , 2007 .

[40]  Dongbin Xiu,et al.  Variance-based global sensitivity analysis via sparse-grid interpolation and cubature , 2011 .

[41]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[42]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[43]  Gianluigi Rozza,et al.  Stochastic Optimal Robin Boundary Control Problems of Advection-Dominated Elliptic Equations , 2013, SIAM J. Numer. Anal..

[44]  A. Quarteroni,et al.  On the coupling of 1D and 3D diffusion-reaction equations. Applications to tissue perfusion problems , 2008 .

[45]  Paolo Crosetto,et al.  Parallel Algorithms for Fluid-Structure Interaction Problems in Haemodynamics , 2011, SIAM J. Sci. Comput..

[46]  Annalisa Quaini,et al.  Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect , 2008 .