A comparative evaluation of nonlinear dynamics methods for time series prediction
暂无分享,去创建一个
[1] Neil Davey,et al. Time Series Prediction and Neural Networks , 2001, J. Intell. Robotic Syst..
[2] Balázs Kégl,et al. Intrinsic Dimension Estimation Using Packing Numbers , 2002, NIPS.
[3] Nello Cristianini,et al. Kernel Methods for Pattern Analysis , 2004 .
[4] T. W. Anderson. DETERMINATION OF THE ORDER OF DEPENDENCE IN NORMALLY DISTRIBUTED TIME SERIES , 1962 .
[5] F. Takens,et al. Dynamical systems and bifurcations , 1985 .
[6] Thorsten Joachims,et al. Making large scale SVM learning practical , 1998 .
[7] Carlo Novara,et al. Nonlinear Time Series , 2003 .
[8] Y. Wong,et al. Differentiable Manifolds , 2009 .
[10] F. Takens. Detecting strange attractors in turbulence , 1981 .
[11] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[12] Neri Merhav,et al. Robust methods for model order estimation , 1996, IEEE Trans. Signal Process..
[13] Leon O. Chua,et al. The double scroll , 1985 .
[14] E. Ott. Chaos in Dynamical Systems: Contents , 1993 .
[15] Henry D. I. Abarbanel,et al. Analysis of Observed Chaotic Data , 1995 .
[16] Shigeo Abe DrEng. Pattern Classification , 2001, Springer London.
[17] M. Stone. Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .
[18] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[19] Andreas S. Weigend,et al. Time Series Prediction: Forecasting the Future and Understanding the Past , 1994 .
[20] Alexander J. Smola,et al. Learning with kernels , 1998 .
[21] H. Abarbanel,et al. Determining embedding dimension for phase-space reconstruction using a geometrical construction. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[22] J. Rissanen,et al. Modeling By Shortest Data Description* , 1978, Autom..
[23] H. Akaike. A new look at the statistical model identification , 1974 .
[24] H. Kantz,et al. Nonlinear time series analysis , 1997 .
[25] P. Grassberger,et al. Measuring the Strangeness of Strange Attractors , 1983 .
[26] D. Ruelle,et al. Ergodic theory of chaos and strange attractors , 1985 .
[27] Mehmet Emre Çek,et al. Analysis of observed chaotic data , 2004 .
[28] G. Können,et al. Homogeneity of 20th century European daily temperature and precipitation series , 2003 .
[29] R. Mañé,et al. On the dimension of the compact invariant sets of certain non-linear maps , 1981 .
[30] L. Chua,et al. The double scroll , 1985, 1985 24th IEEE Conference on Decision and Control.
[31] Neal B. Abraham,et al. Lorenz-like chaos in NH3-FIR lasers , 1995 .
[32] Floris Takens,et al. On the numerical determination of the dimension of an attractor , 1985 .
[33] David G. Stork,et al. Pattern Classification , 1973 .
[34] Neri Merhav,et al. The estimation of the model order in exponential families , 1989, IEEE Trans. Inf. Theory.
[35] Eduardo M. A. M. Mendes,et al. Nonlinear Identification and Cluster Analysis of Chaotic Attractors from a Real Implementation of Chua's Circuit , 1997 .
[36] Martin Casdagli,et al. Nonlinear Modeling And Forecasting , 1992 .
[37] Jianqing Fan. Nonlinear Time Series , 2003 .
[38] Donald L. Snyder,et al. Random point processes , 1975 .
[39] Pravin M. Vaidya,et al. AnO(n logn) algorithm for the all-nearest-neighbors Problem , 1989, Discret. Comput. Geom..
[40] James P. Crutchfield,et al. Geometry from a Time Series , 1980 .