Method for direct detection of quantum entanglement.

Basing on positive maps separability criterion we propose the experimentally viable, direct detection of quantum entanglement. It is efficient and does not require any a priori knowledge about the state. For two qubits it provides a sharp (i.e., "if and only if") separability test and estimation of amount of entanglement. We view this method as a new form of quantum computation, namely, as a decision problem with quantum data structure.

[1]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[2]  M. Horodecki,et al.  Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments , 2002 .

[3]  J. Cirac,et al.  Reflections upon separability and distillability , 2001, quant-ph/0110081.

[4]  B. Moor,et al.  A comparison of the entanglement measures negativity and concurrence , 2001, quant-ph/0108021.

[5]  S. Lloyd,et al.  Quantum-enhanced positioning and clock synchronization , 2001, Nature.

[6]  R. Werner,et al.  Estimating the spectrum of a density operator , 2001, quant-ph/0102027.

[7]  M. Horodecki,et al.  Separability of n-particle mixed states: necessary and sufficient conditions in terms of linear maps , 2000, quant-ph/0006071.

[8]  Dirk Bouwmeester,et al.  The physics of quantum information: quantum cryptography, quantum teleportation, quantum computation , 2010, Physics and astronomy online library.

[9]  V Vedral,et al.  Geometric phases for mixed states in interferometry. , 2000, Physical review letters.

[10]  P. Horodecki,et al.  Schmidt number for density matrices , 1999, quant-ph/9911117.

[11]  J. Cirac,et al.  Optimal Purification of Single Qubits , 1998, quant-ph/9812075.

[12]  David Deutsch,et al.  Stabilization of Quantum Computations by Symmetrization , 1997, SIAM J. Comput..

[13]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[14]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[15]  Pérès,et al.  Separability Criterion for Density Matrices. , 1996, Physical review letters.

[16]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[17]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[18]  Physical Review , 1965, Nature.

[19]  S. Pancharatnam,et al.  Generalized theory of interference, and its applications , 1956 .

[20]  Tobias J. Hagge,et al.  Physics , 1929, Nature.

[21]  J. Cirac,et al.  Reflections upon separability and distillability , 2001, quant-ph/0110081.

[22]  S. Lloyd,et al.  Quantum-enhanced positioning and clock synchronization , 2001, Nature.

[23]  R. Werner,et al.  Estimating the spectrum of a density operator , 2001, quant-ph/0102027.

[24]  M. Horodecki,et al.  Separability of n-particle mixed states: necessary and sufficient conditions in terms of linear maps , 2000, quant-ph/0006071.

[25]  V Vedral,et al.  Geometric phases for mixed states in interferometry. , 2000, Physical review letters.

[26]  P. Horodecki,et al.  Schmidt number for density matrices , 1999, quant-ph/9911117.

[27]  J. M. Sancho,et al.  Measuring the entanglement of bipartite pure states , 1999, quant-ph/9910041.

[28]  R. Werner,et al.  Optimal manipulations with qubits: Universal-NOT gate , 1999, quant-ph/9901053.

[29]  J. Cirac,et al.  Optimal Purification of Single Qubits , 1998, quant-ph/9812075.

[30]  David Deutsch,et al.  Stabilization of Quantum Computations by Symmetrization , 1997, SIAM J. Comput..

[31]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[32]  Pérès,et al.  Separability Criterion for Density Matrices. , 1996, Physical review letters.

[33]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[34]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[35]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[36]  S. Pancharatnam,et al.  Generalized theory of interference and its applications , 1956 .

[37]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .