Unsupervised Domain Transfer with Conditional Invertible Neural Networks
暂无分享,去创建一个
L. Maier-Hein | U. Köthe | A. Seitel | L. Ayala | J. Gröhl | T. Adler | J. Nölke | S. Seidlitz | Melanie Schellenberg | A. Studier-Fischer | J. Sellner | Felix Nickel | Kris K. Dreher | Marco Hübner
[1] Anne L. Martel,et al. Metrics reloaded: Recommendations for image analysis validation , 2022, 2206.01653.
[2] L. Maier-Hein,et al. SIMPA: an open-source toolkit for simulation and image processing for photonics and acoustics , 2022, Journal of biomedical optics.
[3] F. Gao,et al. Deep learning-based quantitative optoacoustic tomography of deep tissues in the absence of labeled experimental data , 2021, Optica.
[4] Costas J. Spanos,et al. CDCGen: Cross-Domain Conditional Generation via Normalizing Flows and Adversarial Training , 2021, ArXiv.
[5] L. Maier-Hein,et al. Photoacoustic image synthesis with generative adversarial networks , 2021, Photoacoustics.
[6] Lena Maier-Hein,et al. Semantic segmentation of multispectral photoacoustic images using deep learning , 2021, Photoacoustics.
[7] Jens Petersen,et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation , 2020, Nature Methods.
[8] L. Maier-Hein,et al. Deep learning for biomedical photoacoustic imaging: A review , 2020, Photoacoustics.
[9] Eldert J. van Henten,et al. Optimising realism of synthetic images using cycle generative adversarial networks for improved part segmentation , 2020, Comput. Electron. Agric..
[10] Lena Maier-Hein,et al. Surgical spectral imaging , 2020, Medical Image Anal..
[11] Kai Li,et al. Adversarial Feature Hallucination Networks for Few-Shot Learning , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
[12] Lena Maier-Hein,et al. Live Monitoring of Haemodynamic Changes with Multispectral Image Analysis , 2019, OR/MLCN@MICCAI.
[13] Ullrich Köthe,et al. Conditional Invertible Neural Networks for Guided Image Generation , 2019 .
[14] Stefano Ermon,et al. AlignFlow: Cycle Consistent Learning from Multiple Domains via Normalizing Flows , 2019, AAAI.
[15] Lena Maier-Hein,et al. Band selection for oxygenation estimation with multispectral/hyperspectral imaging. , 2019, Biomedical optics express.
[16] Ullrich Köthe,et al. Uncertainty-aware performance assessment of optical imaging modalities with invertible neural networks , 2019, International Journal of Computer Assisted Radiology and Surgery.
[17] Geraint Rees,et al. Clinically applicable deep learning for diagnosis and referral in retinal disease , 2018, Nature Medicine.
[18] Taesung Park,et al. CyCADA: Cycle-Consistent Adversarial Domain Adaptation , 2017, ICML.
[19] Klaus H. Maier-Hein,et al. Physiological Parameter Estimation from Multispectral Images Unleashed , 2017, MICCAI.
[20] Jan Kautz,et al. Unsupervised Image-to-Image Translation Networks , 2017, NIPS.
[21] Raymond Y. K. Lau,et al. Least Squares Generative Adversarial Networks , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).
[22] Samy Bengio,et al. Density estimation using Real NVP , 2016, ICLR.
[23] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[24] Geng Ku,et al. Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography. , 2006, Journal of biomedical optics.
[25] A. Haar. Zur Theorie der orthogonalen Funktionensysteme , 1910 .